Answer:
K = G Mm / 9R
Explanation:
Expression for escape velocity V_e = 
Kinetic energy at the surface = 1/2 m V_e ²
= 1/2 x m x 2GM/R
GMm/R
Potential energy at the surface
= - GMm/R
Total energy = 0
At height 9R ( 8R from the surface )
potential energy
= - G Mm / 9R
Kinetic energy = K
Total energy will be zero according to law of conservation of mechanical energy
so
K - G Mm / 9R = 0
K = G Mm / 9R
Well Thermal energy is an example of kinetic energy, as it is due to the motion of particles, with motion being the key. Thermal energy results in an object or a system having a temperature that can be measured. Thermal energy can be transferred from one object or system to another in the form of heat. While <span>Heat energy (or thermal energy or simply heat) is defined as a form of energy which transfers among particles in a substance (or system) by means of kinetic energy of those particles. In other words, under kinetic theory, the heat is transferred by particles bouncing into each other.</span>
Answer:
The correct answer is "20 Volts".
Explanation:
Given:
Heat,
H = 100 J
Resistance,
R = 4 Ω
As we know,
⇒ 
By putting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒
Answer:
35000 KJ
Explanation:
The equation for the kinetic energy is given by the formula :


OR
Units will be kilojoules since the units of mass was kilograms .
Our final answer is 35000 KJ
Hope this helped and have a good day
Answer:
NH₃
Explanation:
The compound that is covalent from the given choices is NH₃.
Covalent compounds are usually formed between two atoms with similar values of electronegativities such that the difference is very small or zero.
- This bond type involves the sharing of electrons between two atoms with similar electronegativities.
- Nitrogen and hydrogen forms stable configuration that are isoelectronic with noble gases by sharing their valence electrons.
- The 3 hydrogen electrons are enough to make nitrogen isoelectronic with neon.
- Also, the nitrogen with 3 lone pairs of electrons provides the bonding hydrogen with needed electrons to attain a structure similar to helium.