Answer:

Explanation:
Given that,
The mass of the Jupiter,
The radius of Jupiter,
We need to find the acceleration due to gravity on Jupiter. The formula is

Put all the values,

So, the value of acceleration due to gravity on the Jupiter is
.
You mean like a box sitting on a table.
One force is the force of gravity, pulling downward on the box.
Now, you know that the forces acting on the box must be balanced, because
if they're not, then the box would be accelerating. But it's just sitting there, so
there must be some other force, just exactly the right strength and direction to
exactly cancel the force of gravity on the box, so that the net force on it is zero.
The other force is the force of the table pushing upward on the box. It's called
the "normal force".
The answer is 45 degrees.
According to the Kinematics of projectile motion, if the purpose is to maximize range, optimum angle of landing is always 45 degrees.If the purpose is to maximize range & projection height is zero, the optimum angle of projection (and landing) is 45 degrees.
Take the 72 g and divid it by 6 which would equal 12 g each
Answer:
Work done = 0.3142 Nm
Explanation:
Mass of Object is 50 g
Circular path of radius is 10 cm ⇒ 0.1 m
Work done = Force × Distance = ?
*Distance moved (circular path) ⇒ Circumference of the circular path
2πr = 2 × 3.142 × 0.1 ⇒ 0.6284 m
*Force that is enough to move a 50 g must be equal or more than its weight.
therefore convert 50 grams to newton = 0.5 N
Recall that; work done is force times distance
∴ 0.5 N × 0.6284 m
Work done = 0.3142 Nm