1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
4 years ago
11

A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur

e origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?
Mirror Radius (mm) Bending Failure Stress (MPa)
.603 225
.203 368
.162 442
Engineering
1 answer:
Amanda [17]4 years ago
3 0

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

You might be interested in
During the pre-drive check, you'll want to observe the car from the _______.
DENIUS [597]

Answer:

Passenger seat

Explanation:

If im wrong correct me

5 0
3 years ago
Engine vacuum is being discussed. Technician A says that when the engine is operating under light loads, engine vacuum is low. T
sdas [7]

Neither of the two technicians (Technician A and Technician B) is correct.

<h3>What is an engine vacuum?</h3>

An engine vacuum can be defined as a type of engine which is designed and developed to derive its force from air pressure that's being pushed against one side of the piston of an automobile, while having a partial vacuum on the other side.

In this scenario, we can infer and logically conclude that neither of the two technicians (Technician A and Technician B) is correct because engine vacuum is high when the engine is operating under light loads and vice-versa.

Read more on engine vacuum here: brainly.com/question/14602340

#SPJ12

6 0
2 years ago
Examples of reciprocating motion in daily life
bonufazy [111]

Answer:

Examples of reciprocating motion in daily life are;

1) The needles of a sewing machine

2) Electric powered reciprocating saw blade

3) The motion of a manual tire pump

Explanation:

A reciprocating motion is a motion that consists of motion of a part in an upward and downwards (\updownarrow) or in a backward and forward (↔) direction repetitively

Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump

In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.

8 0
3 years ago
if you had 100 B size sheets and you cut them into A size sheets, how many sheets of A size paper would you have
castortr0y [4]

Answer:

200

Explanation:

A size sheets (also known as letter size) are 8.5 inches by 11 inches.

B size sheets (also known as ledger size) are 11 inches by 17 inches.

One B size sheet is twice as large as a A size sheet.  So if you have 100 B size sheets and cut each one in half, you'll get 200 A size sheets.

8 0
3 years ago
"At 195 miles long, and with 7,325 miles of coastline, the Chesapeake Bay is the largest and most complex estuary in the United
Paraphin [41]

Answer:

see explaination

Explanation:

Part a) Width of bay at Potomac River:

Given Data:

· Actual Width at Potomac River = 30 miles

· Bay Model Length Ratio Lr = 1/1000

In fluid mechanics models of real structures are prepared in simulation so that they can be analyzed accurately. A model is known to have simulation if model carries same geometric, kinematic and dynamic properties at a small scale.

Length of any part in model = Actual length x Lr

Hence,

Model Width of bay at Potomac River = 30 x 1/1000 = 0.03 miles

Since 1 mile = 5280 ft

Model Width of bay at Potomac River = 0.03 x 5280 = 158.4 ft

Part b) Model Length of bay bridge in model:

Given Data:

· Actual Length of bay bridge = 4.3 miles

· Bay Model Length Ratio Lr = 1/1000

Model Length = Actual Length x Lr = 4.3 x 1/1000 = 0.0043 miles

Since 1 mile = 5280 ft

Model Length in feet = 0.0043 x 5280 = 22.704 ft

Part c) Model Length of bay bridge in model:

Given Data:

· Model Area = 8 acre

· Bay Model Length Ratio Lr = 1/1000

Model Area = Actual Area x Lr x Lr

8 Model Area :: Actual Area =- (Lp)2 2 = 8,000,000 acre 1000

Since 1 square mile = 640 acre,

Actual Area in square miles = 8,000,000/640 = 12,500 square miles

Part d) Average and maximum depth of model:

Given Data:

· Actual Average depth = 28 ft

· Actual Maximum depth = 174 ft

· Bay Model Length Ratio Lr = 1/1000

Model average depth = Actual average depth x Lr = 28 x 1/1000 = 0.028 feet

Since 1 ft = 12 inch

Model average depth in inch = 0.028 x 12 = 0.336 in

Model maximum depth = Actual maximum depth x Lr = 174 x 1/1000 = 0.174 feet

Since 1 ft = 12 inch

Model maximum depth in inch = 0.174 x 12 = 2.088 in

4 0
3 years ago
Other questions:
  • Your class has designed a self-cleaning reptile tank. What kind of patent would you apply for? A. a plant patent B. a design pat
    14·2 answers
  • A closed system undergoes an adiabatic process during which the work transfer into the system is 12 kJ. The system then returns
    14·1 answer
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • You could be sued if you injure someone while rescuing them if...
    11·2 answers
  • A strong base (caustic or alkali) is added to oils to test for: b. entrained air a)- alkalinity b)- acidity c)- contamination. d
    11·1 answer
  • A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restric
    13·1 answer
  • HELP ME PLEASE RN
    8·1 answer
  • The two major forces opposing the motion of a vehicle moving on a level road are the rolling resistance of the tires, Fr, and th
    7·1 answer
  • Think about a good game story that made you feel a mix of positive and negative emotions. What was the story, what emotions did
    13·1 answer
  • Global climate and weather patterns are driven by differences in the amount of heat energy in different areas of the earth. Whic
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!