1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
4 years ago
11

A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur

e origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?
Mirror Radius (mm) Bending Failure Stress (MPa)
.603 225
.203 368
.162 442
Engineering
1 answer:
Amanda [17]4 years ago
3 0

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

You might be interested in
Technician a s ays both an ohmmeter and a self-powered test light may be used to test for continuity. technician b says both may
amm1812

Both A and B technicians are correct because both might be used to test fuses, according to technician B.

<h3>What is continuity?</h3>

The behavior of a function at a certain point or section is described by continuity. The limit can be used to determine continuity.

From the question:

We can conclude:

The technician claims that you may check for continuity using both an ohmmeter and a self-powered test light. Both might be used to test fuses, according to technician B.

Thus, both A and B technicians are correct because both might be used to test fuses, according to technician B.

Technician A says both an ohmmeter and a self-powered test light may be used to test for continuity. Technician B says both may be used to test fuses. Who is correct?

Learn more about the continuity here:

brainly.com/question/15025692

#SPJ1

5 0
2 years ago
If the load parameters are: Vln=600kV, Il=100A (resistive), calculate the source voltage and current when the line is 50Miles (s
Archy [21]

s 0Miles (short), 150 Miles(medium), and 300 Miles (long).

Explanation:

4 0
3 years ago
What type of intersection is this?
mote1985 [20]
Diverging Diamond Interchange
6 0
3 years ago
About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
Nana76 [90]

The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

<h3>Thickness of the aluminum</h3>

The thickness of the aluminum can be determined using from distance of closest approach of the particle.

K.E = \frac{2KZe^2}{r}

where;

  • Z is the atomic number of aluminium  = 13
  • e is charge
  • r is distance of closest approach = thickness of aluminium
  • k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (1.6\times 10^{-19})^2}{2.5 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

<h3>For 2.5 MeV protons</h3>

Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.

<h3>For 10 MeV alpha-particles</h3>

Charge of alpah particle = 2e

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (2 \times 1.6\times 10^{-19})^2}{10 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

Learn more about closest distance of approach here: brainly.com/question/6426420

7 0
2 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Assoli18 [71]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}  

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

8 0
4 years ago
Other questions:
  • Mr.Haussman has 17 students in his class
    14·2 answers
  • A man weighs 145 lb on earth.Part ASpecify his mass in slugs.Express your answer to three significant figures and include the ap
    11·1 answer
  • Which statement is true for the relay logic diagram shown below?
    9·1 answer
  • I study to get good grades because my parents want to send me to the college of my choice.” This is an a. Intrinsic motivational
    6·2 answers
  • A 50 mol% mixture of propane (1) and n-butane (2) enters an isothermal flash drum at 37°C. If the flash drum is maintained at 0.
    12·1 answer
  • How will the proposed study contribute to your career?*<br>(quantity Surveying​
    11·1 answer
  • Employees cannot be held legally responsible for an environmental violation.
    14·1 answer
  • (4 points) What field of work generally requires (a) an engineer to have a Professional Engineer
    11·1 answer
  • Help me asap I rely need help u will be my fav​
    8·2 answers
  • The design-bid-build model is prons to abuse because separation of phases facilitates the hiding of corrupt practices.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!