Answer:
A) Continental - Continental convergent
Explanation:
I just passed the test
Answer:
Time taken to reach final velocity = 5.5 second
Explanation:
Given:
Initial velocity (Starting from rest)(u) = 0 m/s
Acceleration of ball (a) = 1 m/s²
Final velocity (v) = 5.5 m/s
Find:
Time taken to reach final velocity
Computation:
Using first equation of motion;
v = u + at
where,
v = final velocity
u = initial velocity
a = acceleration
t = time taken
5.5 = 0 + (1)(t)
5.5 = t
Time taken to reach final velocity = 5.5 second
The melting of an ice cube is considered a physical change.
Answer:
we have to find out the critical resolved shear stress. As it it given in the question
Ф = 28.1°and the possible values for λ are 62.4°, 72.0° and 81.1°.
a) Slip will occur in the direction where cosФ cosλ are maximum. Cosine for all possible λ values are given as follows.
cos(62.4°) = 0.46
cos(72.0°) = 0.31
cos(81.1°) = 0.15
Thus, the slip direction is at the angle of 62.4° along the tensile axis.
b) now the critical resolved shear stress can be find out by the following equation.
τ
= σ
( cosФ cosλ)
now by putting values,
= (1.95MPa)[ cos(28.1) cos(62.4)] = 0.80 MPa (114 Psi) 7.23
Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 