It is malleable
Explanation:
The property that makes metals such as sterling silver the best to create hammered earrings is their malleability.
All metals have a unique and fascinating property of being malleable. They can be carved into any of shape. When hammered they simply draw out and retain their long range ordering of their crystal lattice.
This is made possible by the presence of metallic bonding between the atoms.
- The bulk of the physical properties of metals can be attributed the metallic bonds in them.
- Metals have large sea of electrons in them.
- In forming metallic bonds, there is an attraction between the positive nuclei of all the closely packed atoms in the lattice and the electron cloud jointly formed by all the atoms by loosing their outermost shell electrons.
- Metals like silver have low ionization energy.
- When they are hammered, they spread out the energy from the hammering.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
- Mass=m=142kg
- Acceleration=a=30m/s
- Force=F
Using Newton's second law



Answer:
d = 0 [m]
Explanation:
Displacement is understood as the length and direction that a body travels to move from an initial point to an endpoint.
This displacement is represented with a vector or straight line that indicates the distance of the displacement and its length.
This displacement in an easier way to understand. It is the distance between the start point and the endpoint of the journey. Since the second point is equal to the first point, since Mary returns to the same place, there is no difference between the displacement.
Therefore the displacement is zero.
Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k