True because heat energy moves to the warmer areas.
Answer:
Explanation:
During the first .8 s , the elevator is under acceleration . It starts from initial velocity u = 0 , final velocity v = 1.2 m /s , time = .8 s
v = u + at
1.2 = 0 + .8 a
a = 1.2 / .8
= 1.5 m /s²
During the acceleration in upward direction , let reaction force of ground on man be R .
Net force on man = R - mg
Applying Newton's 2 nd law
R - mg = ma
R = m ( g + a )
= 72 ( 9.8 + 1.5 )
= 813.6 N .
This reaction force will be measured by spring scale , so reading of spring scale will be 813.6 N .
Answer:
1.) Micrometres screw gauge
2.) Tape rule.
Explanation:
Given that the diameter and the length of a thin wire, approximately 1m in length, are measured as accurately as possible.
what are the best instruments to use ?
To measure the diameter of a thin wire, the best instrument to use is known as micrometres screw gauge.
And to measure the length of a thin wire up to 1 m, the measuring device can be tape rule or long metre rule.
the answer is c and if I help you thank me
At t =0, the velocity of A is greater than the velocity of B.
We are told in the question that the spacecrafts fly parallel to each other and that for the both spacecrafts, the velocities are described as follows;
A: vA (t) = ť^2 – 5t + 20
B: vB (t) = t^2+ 3t + 10
Given that t = 0 in both cases;
vA (0) = 0^2 – 5(0) + 20
vA = 20 m/s
For vB
vB (0) = 0^2+ 3(0) + 10
vB = 10 m/s
We can see that at t =0, the velocity of A is greater than the velocity of B.
Learn more: brainly.com/question/24857760
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?