The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. Therefore, the boiling point of a liquid depends on atmospheric pressure.
Stoichiomety:
1 moles of C + 1 mol of O2 = 1 mol of CO2
multiply each # of moles times the atomic molar mass of the compund to find the relation is weights
Atomic or molar weights:
C: 12 g/mol
O2: 2 * 16 g/mol = 32 g/mol
CO2 = 12 g/mol + 2* 16 g/mol = 44 g/mol
Stoichiometry:
12 g of C react with 32 g of O2 to produce 44 g of CO2
Then 18 g of C will react with: 18 * 32/ 12 g of Oxygen = 48 g of Oxygen
And the result will be 12 g of C + 48 g of O2 = 60 g of CO2.
You cannot obtain 72 g of CO2 from 18 g of C.
May be they just pretended that you use the law of consrvation of mass and say that you need 72 g - 18g = 54 g. But it violates the proportion of C and O2 in the CO2 and is not possible.
<span>Double displacement reaction is your answer.</span>
Some policies they might do is to put limits on water usage, like making sure that people don't use too much water in baths and when they are tending to their gardens.
Answer:
The answer to your question is 22.4 g of Ca(NO₃)₂
Explanation:
Data
mass of Ca(NO₃)₂ = ?
mass of water = 726 g
concentration = 0.2 m
Process
In Chemistry, there are two main units of concentration Molarity (M) and Molality (m). In this problem concentration is "m" then I will calculate molality.
1) Formula
molality = moles / mass of solvent
2.- Solve for moles
moles = molality x mass of solvent
-Substitution
moles = (0.2) x (0.726)
-Simplification
moles = 0.1452
3.- Convert moles to grams
Molar mass of Ca(NO₃)₂ = 40 + (14 x 2) + (6 x 16)
= 40 + 18 + 96
= 154 g
154 g of Ca(NO₃)₂ ---------------- 1 mol
x ---------------- 0.1452 moles
x = (0.1452 x 154) / 1
x = 22.4 g of Ca(NO₃)₂