Pls give me brainliest!!!
Wavelength = speed / frequency
(345 m/s) / (20,000 Hz) = 0.017 m
Answer:
Explanation:
Let's answer these statements
.1) True. This is the law of reflection.
.2) False. The speed of light depends on the index of refraction n = c / v
v = c / n
.3) True. The frequency creates a forced oscillation, whereby the atoms re-emit at the same incident frequency
.4) False. The index of refraction is a measure of the ratio of the speed of light in a vacuum and the material environment, the ability to change the trajectory is given by the law of refraction
.5) True. True due to the change in beam trajectory due to the law of refraction
.6 False. The phenomenon occurs when you pass from a medium with a higher index to one with a lower ratio, because the refracted beam separates from the normal
.7) True.
.8) False so that the lightning approach is valid Lam >> d,
.9) True.
The answer to your question is C. <span> the Sun's strong gravitational field . This is correct because i took the test :D</span>
1. Find the force of friction between the sports car and the station wagon stuck together and the road. The total mass m = 1928kg + 1041kg = 2969kg. The only force in the x-direction is friction: F = μ*N = μ * m * g
2. Find the acceleration due to friction:
F = m*a = μ * m * g => a = μ * g = 0.6 * 9.81
3. Find the time it took the two cars stuck together to slide 12m:
x = 0.5*a*t²
t = sqrt(2*x / a) = sqrt(2 * x / (μ * g) )
4. Find the initial velocity of the two cars:
v = a*t = μ * g * sqrt(2 * x / (μ * g) ) = sqrt( 2 * x * μ * g)
5. Use the initial velocity of the two cars combined to find the velocity of the sports car. Momentum must be conserved:
m₁ mass of sports car
v₁ velocity of sports car before the crash
m₂ mass of station wagon
v₂ velocity of station wagon before the crash = 0
v velocity after the crash
m₁*v₁ + m₂*v₂ = (m₁+m₂) * v = m₁*v₁
v₁ = (m₁+m₂) * v / m₁ = (m₁+m₂) * sqrt( 2 * x * μ * g) / m₁
v₁ = 33.9 m/s