Answer:
v₃ = 5 [m/s]
Explanation:
To solve this problem we must use the definition of linear momentum, which tells us that momentum is equal to the product of mass by Velocity.
P = m*v
where:
P = linear momentum [kg*m/s]
m = mass [kg]
v = velocity [m/s]
We must also clarify that the momentum is preserved i.e. it is equal before the collision and after the collision
Pbeforecollision = Paftercollision
(m₁*v₁) + (m₂*v₂) = (m₁*v₃) + (m₂*v₄)
where:
m₁ = mass of the truck = 3000 [kg]
v₁ = velocity of the truck = 10 [m/s]
m₂ = mass of the car = 1000 [kg]
v₂ = velocity of the car before the collision = 0 (the car is parked)
v₃ = velocity of the truck after the collision [m/s]
v₄ = velocity of the car after the collision = 15 [m/s]
(3000*10) + (1000*0) = (3000*v₃) + (1000*15)
30000 = 3000*v₃ + 15000
3000*v₃ = 30000 - 15000
3000*v₃ = 15000
v₃ = 5 [m/s]
Answer:
1) 6 seconds
2) 60 m/s
Explanation:
Given:
Δy = 180 m
v₀ = 0 m/s
a = 10 m/s²
1) Find t.
Δy = v₀ t + ½ at²
180 m = (0 m/s) t + ½ (10 m/s²) t²
t = 6 s
2) Find v.
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (10 m/s²) (180 m)
v = 60 m/s
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>
1.28m/s the velocity is found by distance/time.
The Biggest star in our universe is the sun. Although the largest in the galaxy is the <span>VY Canis Majoris which is about 3,900 to 5000 light years away from us.</span>