<span>Answer: 0.00 meters
Solution:
Step 1: Define displacement
DISPLACEMENT = a vector quantity that describes "linear or angular distance in a given direction between a body or point and a reference position."
Step 2: Understand the question
Assumption 1: Assume that when the ant moves 4.25 meters from its origin to its nest, it is moving in a positive direction (on a graph you would draw a line along the x-axis from its origin to +4.25).
Assumption 2: Assume that when the ant "turns around...back to the source of food", it is moving back in the negative direction (towards the origin).
Step 3: Analyze the question
What is the distance between where the ant originally started and where it ended its journey?
The ant started and ended its journey in the same place.
While it traveled a distance of 8.52 meters (2 * 4.26 = 8.52), it's displacement is actually 0.00 meters (4.26 + (-4.26) = 0.00)
Therefore, the answer is 0.00 meters</span>
Explanation:
The given reaction is as follows.

Value of equilibrium constant is given as
= 4.3 \times 10^{6}[/tex].
Concentration of given species is
= 0.010 M;
= 10.M;
= 0.010 M.
Formula for experimental value of equilibrium constant (Q) is as follows.
Q =
Putting the given concentration as follows.
Q =
Q = 
Q = 
It is known that when Q >
, then reaction moves in the backward direction.
When Q <
, then reaction moves in the forward direction.
When Q =
, then reaction is at equilibrium.
As, for the given reaction Q >
then it means reaction moves in the backward direction.
Thus, we can conclude that the reaction is moving in the backward direction, that is, right to left to reach the equilibrium.
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
1.
The ball is not moving and is at a height above the ground so it has only potential energy.
P.E = 2 x 9.81 x 40
P.E = 784.8 J
2.
The ball is moving and has a height above the Earth's surface so it has both kinetic and potential energy.
P.E = same as part 1 = 784.8 J
K.E = 1/2 x 2 x 5²
K.E = 25 J
3.
The ball has no height above the Earth's surface and is moving so it has only kinetic energy.
K.E = 1/2 x 2 x 10²
K.E = 100 J
4.
50000 = 1/2 x 1000 x v²
v = 10 m/s
5.
39200 = 200 x 9.81 x h
h = 20.0 m
6.
12.5 = 1/2 x 1 x v²
v = 5 m/s
98 = 1 x 9.81 x h
h = 10.0 m
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf
Answer:Label the parts of this wave.
A:
✔ crest
B:
✔ amplitude
C:
✔ trough
D:
✔ wavelength
Explanation: