Aw, I hate physics, is this on Apex?
Resistance can be calculated with the information given in the question.
Equation for Resistance: R = V/I
V (voltage) = 200 Volts
I (current) = 200 Amps
So 200 divided by 200 = freaking 1
Answer: R = 1 (ohms)
Hope this Helps!
<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
In an uniform circular motion, the direction of the net force on the object is radially inward, passing through the center of the circle.
Answer:
The voltage will quadruple
Explanation:
The power dissipated in a circuit is given by

where
V is the voltage
R is the resistance
In this problem, the voltage across the circuit is doubled:
V' = 2V
So the new power dissipated is

so, the power dissipated will quadruple.
The vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
The given parameters;
- initial horizontal velocity, vₓ = 16 m/s
- initial vertical velocity,

- time interval 1 seconds
The components of the velocity can be horizontal or vertical velocity.
The vertical component of the velocity is affected by acceleration due to gravity while the horizontal component of the velocity is not affected by gravity.
The vertical component of the velocity is calculated as;

The horizontal component of the velocity is constant since it is not affected by gravity.
The horizontal component of the velocity = 16 m/s
Thus, the vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
Learn more here:brainly.com/question/20349275