Answer:
(x +5)²/4 +(y +8)²/36 = 1
Step-by-step explanation:
The equation of an ellipse with center (h, k) and semi-axes "a" and "b" (where "a" is in the x-direction and "b" is in the y-direction) can be written as ...
((x -h)/a)² +((y -k)/b)² = 1
Here, the center is at (h, k) = (-5, -8), and the semi-minor axis is a=2, while the semi-major axis is b=6.
The equation can be written as ...
((x +5)/2)² +((y +8)/6)² = 1
More conventionally, it is written ...
(x +5)²/4 +(y +8)²/36 = 1
Answer: A
Explanation: The zeroes of f(x) are the value/s of x such that f(x) = 0. So, we need to find the values of x in the equation f(x) = 0.
Note that
f(x) = 0
⇔ x² + 3x - 10 = 0
By factoring into binomials, x² + 3x - 10 = (x + 5)(x - 2). Thus,
x² + 3x - 10 = 0
⇔ (x + 5)(x - 2) = 0
⇔ x + 5 = 0 or x - 2 = 0
⇔ x = -5 or x = 2
Hence, the zeroes of x are -5 and 2.
Here's number 5. If you need more explanation just let me know.
Answer (2x + 7) • (x2 - 2)
Step-by-step explanation:
please give me brainlest!!
Step by step solution :
Step 1 :
Trying to factor as a Difference of Squares :
1.1 Factoring: x2-2
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 2 is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares.
Final result :
(2x + 7) • (x2 - 2)
Keeping in mind that for a cost C(x) and profit P(x) and revenue R(x), the marginal cost, marginal profit and marginal revenue are respectively dC/dx, dP/dx and dR/dx, then
![\bf P(x)=0.03x^2-3x+3x^{0.8}-4400 \\\\\\ \stackrel{marginal~profit}{\cfrac{dP}{dx}}=0.06x-3+2.4x^{-0.2} \\\\\\ \cfrac{dP}{dx}=0.06x-3+2.4\cdot \cfrac{1}{x^{0.2}}\implies \cfrac{dP}{dx}=0.06x-3+2.4\cdot \cfrac{1}{x^{\frac{1}{5}}} \\\\\\ \cfrac{dP}{dx}=0.06x-3+\cfrac{2.4}{\sqrt[5]{x}}](https://tex.z-dn.net/?f=%5Cbf%20P%28x%29%3D0.03x%5E2-3x%2B3x%5E%7B0.8%7D-4400%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bmarginal~profit%7D%7B%5Ccfrac%7BdP%7D%7Bdx%7D%7D%3D0.06x-3%2B2.4x%5E%7B-0.2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7BdP%7D%7Bdx%7D%3D0.06x-3%2B2.4%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%5E%7B0.2%7D%7D%5Cimplies%20%5Ccfrac%7BdP%7D%7Bdx%7D%3D0.06x-3%2B2.4%5Ccdot%20%5Ccfrac%7B1%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7BdP%7D%7Bdx%7D%3D0.06x-3%2B%5Ccfrac%7B2.4%7D%7B%5Csqrt%5B5%5D%7Bx%7D%7D)