Answer:
Force.
Explanation:
SImple as that. think of Newtons Laws.
Answer:
the work required for the loading of second dart is 64 times greater as work required for loading the first dart.
Explanation:
k = spring constant of the spring loaded toy dart gun
x₁ = compression of spring to load the first dart = d
x₂ = compression of spring to load the second dart = 8 d
E₁ = Work required to load the first dart
E₂ = Work required to load the second dart
Work required to load the first dart is given as
E₁ = (0.5) k x₁² = (0.5) k d²
Work required to load the second dart is given as
E₂ = (0.5) k x₂² = (0.5) k (8d)² = (64) (0.5) k d²
E₂ = 64 E₁
So the work required for the loading of second dart is 64 times greater as work required for loading the first dart
Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg
120n
since the speed is doubled, her force is doubled
Answer:
X: Always attractive
Y: Infinite range
Z: Attractive or repulsive
ANSWER IS C