A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s) with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.
The answer therefore would be the number 0.27 divided by two and then square while getting the square you would make it a binomial.
I wont give the answer but the steps
Your Welcome
To get rockets into orbit, they need much more thrust than the amount that will get them up to the required altitude. They also need sufficient thrust to allow them to travel with very high orbital speed. ... If speed is less than this, an object will fall back to the Earth
Answer:
a). Work transfer = 527.2 kJ
b). Heat Transfer = 197.7 kJ
Explanation:
Given:
= 5 Mpa
= 1623°C
= 1896 K
= 0.05 
Also given 
Therefore,
= 1 
R = 0.27 kJ / kg-K
= 0.8 kJ / kg-K
Also given : 
Therefore,
= 

= 0.1182 MPa
a). Work transfer, δW = 
![\left [\frac{5\times 0.05-0.1182\times 1}{1.25-1} \right ]\times 10^{6}](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B5%5Ctimes%200.05-0.1182%5Ctimes%201%7D%7B1.25-1%7D%20%20%5Cright%20%5D%5Ctimes%2010%5E%7B6%7D)
= 527200 J
= 527.200 kJ
b). From 1st law of thermodynamics,
Heat transfer, δQ = ΔU+δW
= 
=![\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B%5Cgamma%20-n%7D%7B%5Cgamma%20-1%7D%20%5Cright%20%5D%5Ctimes%20%5Cdelta%20W)
=![\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B1.4%20-1.25%7D%7B1.4%20-1%7D%20%5Cright%20%5D%5Ctimes%20527.200)
= 197.7 kJ
Answer:
ω=314.15 rad/s.
0.02 s.
Explanation:
Given that
Motor speed ,N= 3000 revolutions per minute
N= 3000 RPM
The speed of the motor in rad/s given as

Now by putting the values in the above equation

ω=314.15 rad/s
Therefore the speed in rad/s will be 314.15 rad/s.
The speed in rev/sec given as

ω= 50 rev/s
It take 1 sec to cover 50 revolutions
That is why to cover 1 revolution it take

MW means megawatt, and one megawatt is a million Watts.
The 2.5 MW turbine is 4/2.5=1.6 $/w
Answer B