1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
4 years ago
14

A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s)

with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.
Required:

a. Find the initial DO deficit (Do) after mixing.
b. What is the reaeration constant after mixing?
c. What is the critical time for this system?
d. What is the downstream distance fitting the critical time?
Engineering
1 answer:
4vir4ik [10]4 years ago
8 0

A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s) with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.

The answer therefore would be the number 0.27 divided by two and then square while getting the square you would make it a binomial.

I wont give the answer but the steps

Your Welcome

You might be interested in
How do you extablish a chain of dimensions​
kap26 [50]

Answer:

Certamente você conhece três dimensões: comprimento, largura e profundidade. Além disso, quando se pensa um pouco fora da caixa também seria possível adicionar a dimensão do tempo.

Provavelmente, algumas pessoas viajam na maionese quando toca-se nesse assunto. Vem em suas mentes universos paralelos e até mesmo realidades alternativas. Mas também não se trata disso.

Explanation:

Basicamente as dimensões são as facetas do que nós percebemos a ser realidade. Existem muitos debates sobre dimensões na física. Um dos que mais chamam a atenção se chama Teoria das Cordas.

r

5 0
3 years ago
How can you relate entropy to renewable and non-renewable energy?​
djyliett [7]

Answer:

rrbtnhipsdjmskmbbylu.

4 0
4 years ago
1. A cylindrical casting is 0.3 m in diameter and 0.5 m in length. Another casting has the same metal is rectangular in cross-se
Lorico [155]

Based on the Chvorinov's rule, the diference in the <em>solidification</em> times of the two castings is 14.092 times the <em>solidification</em> time of the prism casting.

<h3>How to apply the Chvorinov's rule for casting processes</h3>

The Chvorinov's rule is an empirical method to estimate the cooling time of a casting in terms of a <em>reference</em> time. This rule states that cooling time (<em>t</em>) is directly proportional to the square of the volume (<em>V</em>), in cubic meters, divided to the surface area (<em>A</em>), in square meters. Now we proceed to model each casting:

<h3>Cylindrical casting</h3>

t = C · [0.25π · D² · L/(0.5π · D² + π · D · L)]²

t = C · [0.25 · D · L/(0.5 · D + L)]²    (1)

<h3>Prism casting</h3>

t' = C · [3 · T² · L/(6 · T · L + 2 · T · L + 6 · T²)]²

t' = C · [3 · T · L/(8 · L + 6 · T)]²     (2)

<h3>Relationship between the cross sections of both castings</h3>

3 · T² = 0.25π · D²     (3)

Where:

  • <em>t</em> - Cooling time of the cylindrical casting, in time unit.
  • <em>t'</em> - Cooling time of the prism casting, in time unit.
  • <em>C</em> - Cooling factor, in time unit per square meter.
  • <em>D</em> - Diameter of the cylinder, in meters.
  • <em>L</em> - Length of the casting, in meters.
  • <em>T</em> - Width of the cross section of the prism casting, in meters.

If we know that <em>D =</em> <em>0.3 m</em>, then the thickness of the prism casting is:

T = \sqrt{\frac{\pi}{12} }\cdot D

<em>T ≈ 0.153 m</em>

<em />

And (1) and (2) simplified into these forms:

<h3>Cylindrical casting</h3>

t = C · {0.25π · (0.3 m) · (0.5 m)/[0.5 · (0.3 m) + 0.5 m]}²

t = 0.0329 · C     (1b)

<h3>Prism casting</h3>

t' = C · {3 · (0.153 m) · (0.5 m)/[8 · (0.5 m) + 6 · (0.153 m)]}²

t' = 0.00218 · C     (2b)

Lastly we find the <em>percentual</em> difference in the solidification times of the two castings by using the following expression:

<em>r = (</em>1 <em>- t'/t) ×</em> 100 %

<em>r = (</em>1 <em>-</em> 0.00218<em>/</em>0.0329<em>) ×</em> 100 %

<em>r =</em> 93.374 %

The <em>cooling</em> time of the <em>prism</em> casting is 6.626 % of the <em>solidification</em> time of the <em>cylindrical</em> casting. The diference in the <em>solidification</em> times of the two castings is 14.092 times the <em>solidification</em> time of the <em>prism</em> casting. \blacksquare

To learn more on solidification times, we kindly invite to check this verified question: brainly.com/question/13536247

3 0
3 years ago
Given: A graphite-moderated nuclear reactor. Heat is generated uniformly in uranium rods of 0.05m diameter at the rate of 7.5 x
sineoko [7]

Answer:

The maximum temperature at the center of the rod is found to be 517.24 °C

Explanation:

Assumptions:

1- Heat transfer is steady.

2- Heat transfer is in one dimension, due to axial symmetry.

3- Heat generation is uniform.

Now, we consider an inner imaginary cylinder of radius R inside the actual uranium rod of radius Ro. So, from steady state conditions, we know that, heat generated within the rod will be equal to the heat conducted at any point of the rod. So, from Fourier's Law, we write:

Heat Conduction Through Rod = Heat Generation

-kAdT/dr = qV

where,

k = thermal conductivity = 29.5 W/m.K

q = heat generation per unit volume = 7.5 x 10^7 W/m³

V = volume of rod = π r² l

A = area of rod = 2π r l

using these values, we get:

dT = - (q/2k)(r dr)

integrating from r = 0, where T(0) = To = Maximum center temperature, to r = Ro, where, T(Ro) = Ts = surface temperature = 120°C.

To -Ts = qr²/4k

To = Ts + qr²/4k

To = 120°C + (7.5 x 10^7 W/m³)(0.025 m)²/(4)(29.5 W/m.°C)

To = 120° C + 397.24° C

<u>To = 517.24° C</u>

5 0
4 years ago
According to the basic speed law, if conditions make it unsafe to follow posted speed limits, you should:____.
lapo4ka [179]

According to the basic speed law, if conditions make it unsafe to follow posted speed limits, you should:  Reduce your speed to less than the maximum posted speed limit.

<h3>What is the most speed limit?</h3>

The highest published speed limit in the country is 85 mph (137 km/h) and can be located only on Texas State Highway 130, a toll road that bypasses the Austin metropolitan area for long-distance traffic.

<h3>What is the 'rule'? </h3>

The 'rule' itself is quite straightforward: if the speed limit is (for example) 30mph, the rule notes that you won't get a speeding ticket unless you are going 10% plus 2 mph faster than the limit.

To learn more about speed limit, refer

brainly.com/question/19567226

#SPJ4

7 0
2 years ago
Other questions:
  • Please help!!
    7·2 answers
  • Which of the following statement(s) are true?
    14·1 answer
  • Which of the following has led to a safer and more prosperous global community within the last century? the Bronze Age composite
    13·2 answers
  • If the power factor is corrected to 0.95 lagging, keeping the receiving end MVA constant, what will be the new voltage regulatio
    6·1 answer
  • Match the car part to the system
    7·1 answer
  • Air at a pressure of 6000 N/m^2 and a temperature of 300C flows with a velocity of 10 m/sec over a flat plate of length 0.5 m. E
    7·1 answer
  • Technician A says that a tie rod end is a ball and socket joint similar in construction to a ball joint. Technician B says that
    6·2 answers
  • when it comes to game mechanics, what is the most universal mechanic that is present in virtually every computer game that you c
    9·1 answer
  • How much horse power does a Lamborghini have
    6·2 answers
  • To properly purge water from the fuel system of an aircraft equipped with fuel tank sumps and a fuel strainer quick drain, it is
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!