Bromine, it's the only element that isn't a metal
Answer: There is no question.
Explanation:
Due to no question I can simply not answer this. Pls mark me brianliest for answering correct.
Best Regards,
Me
28.01 g/mol
hope that helped
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Answer:
1.8 × 10⁻⁴ mol M/s
Explanation:
Step 1: Write the balanced reaction
2 Br⁻ ⇒ Br₂
Step 2: Establish the appropriate molar ratio
The molar ratio of Br⁻ to Br₂ is 2:1.
Step 3: Calculate the rate of appearance of Br₂
The rate of disappearance of Br⁻ at some moment in time was determined to be 3.5 × 10⁻⁴ M/s. The rate of appearance of Br₂ is:
3.5 × 10⁻⁴ mol Br⁻/L.s × (1 mol Br₂/2 mol Br⁻) = 1.8 × 10⁻⁴ mol Br₂/L.s