Answer:
To calculate the energy in joules, simply enter the mass of ammunition (in grams) that you use, and the fps that you've read from your Chrono unit.
From the solution that I have done, the wavelength in the question that we have is 31.88 cm
<h3>How to solve for the wavelength</h3>
The frequency in the question is given as 40/30 = 1.33 hz
Next we have to solve for V
= 425/10
= 42.5 cm/s
v = frequency * wavelength
we have to put in the values in the formula. This would be
42.5 = 1.33 x wavelength
we have to divide through by 1.33 to get the wavelength. This would be
42.5/1.333 = wavelength
31.88 cm = wavelength
Hence we can say that the wavelength in the question that we have here is 31.88 cm
Read more on wavelength here:
brainly.com/question/10728818
#SPJ4
Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h