Answer:
The stitches and dimples around a baseball and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.
Explanation:
The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.
A smooth ball with no stitches or dimples has more air drag that opposes the motion.
A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.
Answer:
ξ = 0.00845020162 V or 8.4 mV
Explanation:
Magnetic flux measures the total magnetic field that passes through a known area. Magnetic flux describe the effect of magnetic field in a given area. Mathematically,
magnetic flux (Ф) = BA cos ∅
where
A = test area
B = magnetic field
before the flip
Ф = Bπr²N
N = number of turn
magnitude of induced emf = N |ΔФ/Δt|
ξ = 2Nπr²B/dt
ξ = 2 × 22 × π × (1.02/2)² × 0.000047/0.2
ξ = 44 × π × 0.51² × 0.000047/0.2
ξ = 44 × π × 0.2601 × 0.000047/0.2
ξ = 0.0005378868 × 3.142/0.2
ξ = 0.00169004032/0.2
ξ = 0.00845020162 V or 8.4 mV
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.