Are u sure this is the right option? Well, antimony can be decomposed. Including octane.
Captive breeding,,,,,,,,,,,,,,,,,
Answer:
Assuming that all of the oxygen is used up, 1.53×4111.53×411 or 0.556 moles of C2H3Br3 are required. Because there are only 0.286 moles of C2H3Br3 available, C2H3Br3 is the limiting reagent.
Limiting Reagent What is the limiting reagent if 76.4 grams of C2H3Br3 were reacted with 49.1 grams of O2? C2H3Br3 + 11O2 → 8CO2 + 6H2O + 6Br2 SOLUTION Using Approach 1: A. 76.4g × (1 mol/ 266.72 g) = 0.286 moles C2H3Br3 49.1g × (1 mole/ 32 g) = 1.53 moles O2 B.
Explanation:
MRK ME BRAINLIEST PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Introductory_Chemistry_(Tro)/08%3A_Quantities_in_Chemical_Reactions/8.04%3A_Limiting_Reactant_and_Theoretical_Yield
The mass of the salt converted into moles divided by the liters of water in a solution would give the Molarity (M) or concentration of the solution. The simplest way to change the solution would be to change the amount of solute or solvent in a solution.