Answer:
The position of the spring in terms of g, m & k is 
Explanation:
Stiffness of the spring = k
Mass = m
When a mass m is attached with the spring then spring stretched. in that case the force exerted on the spring is equal to weight of the mass attached.
⇒ Force exerted on the spring F = k x
⇒ m g = k x
⇒ 
This is the position of the spring in terms of g, m & k.
Answer:
Kevin wants to make the firm private
Explanation:
Based on the information provided within the question in regards to the situation it seems that Kevin wants to make the firm private. Private Firms are companies that are owned by non-governmental entities or instead owned by a single individual or a very small amount of shareholders. Which is what Kevin seems to be wanting to do since he wants to buy back all the shares of the company so that only his family owns the company.
If you have any more questions feel free to ask away at Brainly.
Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.
Hope this helps! Please mark as brainliest!
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.