Answer:
11.98 N
Explanation:
Normal force = mg = 2.03 * 9.81
coeff of static friction must be overcome for the book to begin moving
.602 = F / (2.03 * 9.81) = 11.98 N
Answer:
it needs to be shaken but make sure you have enough room to shake it safely
Explanation:
To properly operate the laboratory thermometer it needs to be shaken but make sure you have enough room to shake it safely. This done because there is a small bend in the mercury channel of a clinical thermometer that uses mercury. You must shake the thermometer to get the mercury from a previous reading from the thermometer back into the bulb for taking new reading. The bend prevents flow back into the tube so that one can comfortably take reading.
Explanation:
Given that,
Frequency of the power line, f = 6 Hz
Value of maximum electric field strength of 11.6 kV/m
(a) The wavelength of this very low frequency electromagnetic wave is given by using relation as :




(b) As its can be seen that the wavelength of this wave is very high. It shows that it is a radio wave.
(c) The relation between the maximum magnetic field strength and maximum electric field strength is given by :

So, the maximum magnetic field strength is
.
Answer:
5x10^-3
Explanation:
Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.
Hooke's Law can be represented as
<h3> F = kx, </h3>
<em>where F is the force </em>
<em> k is the spring constant</em>
<em> x is the extension of the material </em>
<em />
Plug values in the equation
Step 1 find the original extension
0.045 = (400)x
x = 1.125x 10^-4 m d
Step 2 find the new extension
0.045+2 = 400(x)
2.045 = 400x
x = 5.1125x10^-3
Step 3 subtract the new extension with original
Total extension of the spring = 5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3
I think the answer is c) 1
Hope it helps and have a good day