Answer:
Check the attached image below
Explanation:
Kindly check the attached image below to get the step by step explanation to the question above.
Answer: B: 20-degree incline
Explanation:
A tractor user should avoid slopes of more than 20 degrees in order to avoid rollovers
Answer:
combining scientific knowledge, careful reasoning, and artistic invention in a flexible approach to problem-solving
Explanation:
Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer:
The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW
Explanation:
If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.
In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg
For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg
For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg
For the power output, we have to multiply the steam flow with the enthalpic jump.
The addition of the 2 jumps is the total power output.