Answer:
hello your question is incomplete attached below is the complete question
A) optimum compressor ratio = 9.144
B) specific thrust = 2.155 N.s /kg
C) Thrust specific fuel consumption = 1670.4 kg/N.h
Explanation:
Given data :
Mo = 2.1 , To = 220k , Tt4 = 1700 k, hpr = 42000 kj/kg, Cp = 1.004 kj/ kg.k
γ = 1.4
attached below is the detailed solution
Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
The impact behavior of plastic materials is strongly dependent upon the temperature. At high temperatures, materials are more ductile and have high impact toughness. At low temperatures, some plastics that would be ductile at room temperature become brittle.
A 3-D model can be communicated, and can also be a visual model.
Because they think it will make them more money