<span>C7H8
First, lookup the atomic weight of all involved elements
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Then calculate the molar masses of CO2 and H2O
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol
Now calculate the number of moles of each product obtained
Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK.
moles CO2 = 3.52 / 44.0087 = 0.079984
moles H2O = 0.822 / 18.01488 = 0.045629
Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen.
moles C = 0.079984
moles H = 0.045629 * 2 = 0.091258
So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting
1: 1.140953
The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like)
1 ( 1 : 1.140953) = 1 : 1.140953
2 ( 1 : 1.140953) = 2 : 2.281906
3 ( 1 : 1.140953) = 3 : 3.422859
4 ( 1 : 1.140953) = 4 : 4.563812
5 ( 1 : 1.140953) = 5 : 5.704765
6 ( 1 : 1.140953) = 6 : 6.845718
7 ( 1 : 1.140953) = 7 : 7.986671
8 ( 1 : 1.140953) = 8 : 9.127624
That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
Well all I know that animals take in oxygen and take out carbon dioxide and plants take in carbon dioxide and take out oxygen
Explanation:
Given -
- An organic compound gives H₂ gas with Na
- On treatment with alkaline iodine it gives yellow ppt.
- On oxidation with CrO₃/H⁺ forms an aldehyde (C₂H₄O)
To Find -
- Name the compound and write the reaction involved
Now,
Let A be the organic compound.
Then,
- A + Na → + H₂↑
- A + I₂ → CHI₃ (yellow ppt.)
- A + CrO₃ + H⁺ → C₂H₄O
Now,
Here we see that compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives aldehyde.
- Functional group of aldehyde = —CHO
And It forms only 2 Carbon aldehyde it means, It is Ethanal (CH₃CHO).
Compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives ethanal.
It means,
We know that 1° alcohol on oxidation gives aldehyde.
Here it gives 2 Carbon aldehyde.
It means,
Here 2 Carbon and 1° alcohol is used.
Now,
Its cleared that Compound A is Ethanol.
Reaction Involved -
- CH₃CH₂OH + Na → CH₃CH₂O⁻Na⁺ + H₂↑
- CH₃CH₂OH + I₂ + OH⁻ → CHI₃↓ + HCOO⁻ + HI + H₂O
- CH₃CH₂OH + CrO₃ + H⁺ → CH₃CHO
Answer:
the weather is raining sunning or rainbow
because of the sun its so hot
because its cold snowing
because the oceans is water you can swimming
Explanation:
that is
Answer:
Over the past few decades, humans have released so many different chemicals into the air that they have changed the mix of gases in the atmosphere. ... In addition, the exhaust from cars, trucks, and buses releases nitrogen oxides and sulfur dioxide into the air.