Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!
Answer:
I think that it might be cytoplasm
Explanation:
I got this from google
Cytoplasm is a thick solution that fills each cell and is enclosed by the cell membrane. It is mainly composed of water, salts, and proteins.
Answer:
Following are the solution to the given choice:
Explanation:
Hex-2-yne is just not alkyne symmetric, therefore two things respectively hexan-3-one and hexan-2-one are to be given.
The attached file it displayed the response along with the mechanism, please find the.
Answer:
Independent Variable = Years
Dependent Variable = Number of Mobiles phone owners
Explanation:
Independent variables are plotted on x-axis and the dependent variables are plotted on y-axis.
In given graph the "Years" belong to x-axis hence, years are the independent variables.
Also, "Number of Mobile phones owners" belong to y-axis hence, this number is the dependent variable.
I am assuming that the apparatus you're referring to would be a container wherein there is water placed inside. To answer your question, I expect the water level to rise when it's placed in warm water and I expect it to fall when placed in cool water. This is because the water molecules get excited when placed in water molecule, thus, moving with more kinetic energy. The opposite goes with cool water.