I'm assuming that by "miles" you mean moles.
If O2 is the excess reactant, that means Fe is the limiting reactant. That means that the amount of product being formed depends on the amount of Fe reactant present. To calculate the moles of Fe2O3 formed, start with the given 6.4 moles of Fe and use the mole to mole ratio given by the reaction as shown below:
6.4 mol Fe x

=
3.2 mol Fe2O3
this is the formula and answer of this question
The density of a material is the mass of the material per unit volume. Here the weight of the same metal is 44.40g, 40.58g and 38.35g having volume 4.8 mL, 4.7 mL and 4.2 mL respectively. Thus the density of the metal as per the given data are,
= 9.25g/mL,
= 8.634g/mL and
= 9.130g/mL respectively.
The equation of the standard deviation is √{∑(x -
)÷N}
Now the mean of the density is {(9.25 + 8.634 + 9.130)/3} = 9.004 g/mL.
The difference of the density of the 1st metal sample (9.25-9.004) = 0.246 g/mL. Squaring the value = 0.060.
The difference of the density of the 2nd metal sample (9.004-8.634) =0.37 g/mL. Squaring the value = 0.136.
The difference of the density of the 3rd metal sample (9.130-9.004) = 0.126 g/mL. Squaring the value 0.015.
The total value of the squared digits = (0.060 + 0.136 + 0.015) = 0.211. By dividing the digit by 3 we get, 0.070. The standard deviation will be
. Thus the standard deviation of the density value is 0.265g/mL.