1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
3 years ago
7

List all possible fracture mechanisms under which the unidirectional composites fail. Briefly explain and describe the related m

aterial behavior for each mechanism.
It is seen that the composite longitudinal strength and stiffness and transverse stiffness are improvements over the corresponding matrix properties due to the presence of fibers. However, a unidirectional composite subjected to transverse loads exhibit lower strength ranges than does the matrix material. Why? Use diagrams or equations as needed.
Describe the damage accumulation process in cross-ply laminates ([0/90/90/0]) under longitudinal loading step by step. Also, estimate the elastic modulus of the composite using EL and ET (for longitudinal and transverse modulus of each ply) assuming all plies are of same thickness.
Engineering
1 answer:
professor190 [17]3 years ago
7 0

Answer:

Ususushehehehhuuiiïbbb

Explanation:

Yyshehshehshshsheyysysueueue

You might be interested in
The tropics receive more heat from the sun than is radiated away from the tropics, and polar regions radiate more than they rece
IRINA_888 [86]

Answer:

It is a well known fact that the earth rotates around the sun in an inclined axis which is approximately 23 degree. The inclined nature of earth axis causes variation in the solar heat received at any place on the earth surface. The hemisphere facing the sun due to this axial tilt, gets higher sun energy as compared to the opposite side. The hemisphere which faces the sun will experience summer whereas the hemisphere away from sun will experience winter.

In each of the hemisphere the polar areas will receive higher radiation and longer daytime during the summer season. However it has been observed that there is difference in radiation received at different areas of earth surface and radiated. The tropical areas have lower reflectance and thus a large part of incoming solar radiation have been absorbed along the tropics. The poles though have longer daytime during summer and hence greater solar radiation but due to high reflectance radiate more energy. Thus the tropical areas have surplus energy as compared to deficit energy areas of poles. This difference in energy creates a heat imbalance.

This net heat difference between poles and equator gives rise to a global circulation system leading to flow of heat from the net energy excess areas to deficit areas. This circulation takes place through atmosphere as well as oceans and different process of climate viz. evaporation, transpiration, rainfall, wind, convection, oceanic circulations etc work as tools of this system

4 0
3 years ago
Which of the following allows team members to visualize a design model from a variety of perspectives?
julsineya [31]

Answer: from what i know im pretty sure its isometrics or sketches im certain its sketches but not 100%

Explanation: A sketch is a rapidly executed freehand drawing that is not usually intended as a finished work. A sketch may serve a number of purposes: it might record something that the artist sees, it might record

8 0
3 years ago
Read 2 more answers
What are the philological elements of interior design most like?
sp2606 [1]

Answer:

Ea public address glven via the intercom system of a large buildingxplanation:

7 0
2 years ago
Briefly explain how each of the following influences the tensile modulus of a semicrystalline polymer and why:(a) molecular weig
marin [14]

Answer:

(a) Increases

(b) Increases

(c) Increases

(d) Increases

(e) Decreases

Explanation:

The tensile modulus of a semi-crystalline polymer depends on the given factors as:

(a) Molecular Weight:

It increases with the increase in the molecular weight of the polymer.

(b) Degree of crystallinity:

Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.

(c) Deformation by drawing:

The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.

(d) Annealing of an undeformed material:

This also results in an increase in the tensile strength of the material.

(e) Annealing of  a drawn material:

A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.

5 0
3 years ago
A medium-sized jet has a 3.8-mm-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to th
SCORPION-xisa [38]

Answer:

F_{thrust} ≅ 111 KN

Explanation:

Given that;

A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8

mass = 85,000 kg

drag co-efficient (C) = 0.37

(velocity (v)= 230 m/s

density (ρ) = 1.0 kg/m³

To calculate the thrust; we need to determine the relation of the drag force; which is given as:

F_{drag} = \frac{1}{2} × CρAv²

where;

ρ = density of air wind.

C = drag co-efficient

A = Area of the jet

v = velocity of the jet

From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0

SO, F_{drag}-F_{thrust} = 0

We can as well say:

F_{drag}= F_{thrust}

We can now replace F_{thrust} with F_{drag} in the above equation.

Therefore, F_{thrust} = \frac{1}{2} × CρAv²

The A which stands as the area of the jet is given by the formula:

A=\frac{\pi d^2}{4}

We can now have a new equation after substituting our A into the previous equation as:

F_{thrust} = \frac{1}{2} × Cρ (\frac{\pi d^2}{4})v^2

Substituting our data from above; we have:

F_{thrust} = \frac{1}{2} × (0.37)(1.0kg/m^3)(\frac{\pi(3.8m)^2 }{4})(230m/s)^2

F_{thrust} = \frac{1}{8}   (0.37)(1.0kg/m^3)({\pi(3.8m)^2 })(230m/s)^2

F_{thrust} = 110,990N

F_{thrust}  in N (newton) to KN (kilo-newton) will be:

F_{thrust} = (110,990N)*\frac{1KN}{1,000N}

F_{thrust} = 110.990 KN

F_{thrust} ≅ 111 KN

In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.

5 0
3 years ago
Other questions:
  • What are some of the main causes of accidents?
    7·1 answer
  • Atmospheric pressure is measured to be 14.769 psia. a. What would be the equivalent reading of a water barometer (inches of H20)
    11·1 answer
  • A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric curren
    15·1 answer
  • Assume a person is making a 350 mile trip from Amherst to Washington DC has four modes available to them: air; auto; train; ship
    10·1 answer
  • 6. PVC boxes are primarily used in new construction because it is simple to
    11·1 answer
  • 10. When an adhesion bond is made by melting a filler metal and allowing it to spread into the pores of the
    7·1 answer
  • Which option supports the following scenario?
    14·1 answer
  • How does refrigeration preserve food and dead bodies​
    12·2 answers
  • Workers who work with what kind of chemicals chemicals may require regular medical checkups on a more frequent basis as a result
    15·1 answer
  • In a medical lab, Sandrine is working to isolate one element from a sample of liquid material. She uses a centrifuge, a machine
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!