Answer:
the required diameter of the rod is 9.77 mm
Explanation:
Given:
Length = 1.5 m
Tension(P) = 3 kN = 3 × 10³ N
Maximum allowable stress(S) = 40 MPa = 40 × 10⁶ Pa
E = 70 GPa = 70 × 10⁹ Pa
δ = 1 mm = 1 × 10⁻³ m
The required diameter(d) = ?
a) for stress
The stress equation is given by:
A is the area = πd²/4 = (3.14 × d²)/4





Substituting the values, we get



d = (9.77 × 10⁻³) m
d = 9.77 mm
b) for deformation
δ = (P×L) / (A×E)
A = (P×L) / (E×δ) = (3000 × 1.5) / (1 × 10⁻³ × 70 × 10⁹) = 0.000063
d² = (4 × A) / π = (0.000063 × 4) / 3.14
d² = 0.0000819
d = 9.05 × 10⁻³ m = 9.05 mm
We use the larger value of diameter = 9.77 mm
Answer:
Explanation:
First one is passion i think
second one is true im not sure
Third one is Time managaemant
Hope this helps!
Answer:

Explanation:
given data
Load P = 35 kN
Width of bar W = 50.8 mm
Breadth of bar B = 25 mm
Ratio of crack length to width α = a/W = 0.2
solution
we get here KI for a rectangular bar that is express as
................................1
here Y is the geometrical function
so
Y =
Y =
Y =
Y = 0.9878
so put here value in equation 1

= 5210.45 × 10³
= 5.21 MPa 
Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is
