Your Answer would be A I believe.
Answer:
Cylindrical
Explanation:
<em>A cylindrical grinder </em><em>is a tool for shaping the exterior of an item. Although cylindrical grinders may produce a wide range of forms, the item must have a central axis of rotation. Shapes such as cylinders, ellipses, cams, and crankshafts are examples of this.</em><em> Cylindrical grinding</em><em> machines are specialized grinding machines that are used to process cylinders, rods, and similar workpieces. The cylinders revolve in one direction between two centers, while the grinding wheel or wheels are close together and rotate in the other direction.</em>
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series