Answer:
c) 10.7m/s
Explanation:
From the exercise we know that at 5m the ball is traveling at 4m/s
To calculate its initial velocity we need to solve the following equation:

Since the initial height is 0
Solving for 

Answer:
18 radians
Explanation:
The computation is shown below:
As we know that
Torque = Force × Moment arm
= 1N × 1M
= 1N-M
Torque = 

Now

Here t = 1 minutes = 60 seconds
1) v = gt = 10*1.5 = 15 m/s
2) r = gt^2 /2 = 10*(1.5)^2 / 2 = 11.25 meters
The diameter of the wire is 2.8 * 10^-3 m.
<h3>What is the length?</h3>
Mass of the wire = 1.0 g or 1 * 10^-3 Kg
Resistance = 0.5 ohm
Resistivity of copper = 1.7 * 10^-8 ohm meter
Density of copper = 8.92 * 10^3 Kg/m^3
V = m/d
But v = Al
Al = m/d
A = m/ld
Resistance = ρl/A
= ρl/m/ld =
l^2 = Rm/ρd
l = √ Rm/ρd
l = √0.5 * 1 * 10^-3 / 1.7 * 10^-8 * 8.92 * 10^3
l = 1.82 m
A = πr^2
Also;
A = m/ld
A = 1 * 10^-3 Kg / 1.82 m * 8.92 * 10^3 Kg/m^3
A = 6.2 * 10^-5 m^2
r^2 = A/ π
r = √A/ π
r = √6.2 * 10^-5 m^2/3.142
r = 1.4 * 10^-3 m
Diameter = 2r = 2( 1.4 * 10^-3 m) = 2.8 * 10^-3 m
Learn more about resistivity:brainly.com/question/14547003
#SPJ4
Missing parts;
Suppose you wish to fabricate a uniform wire from 1.00g of copper. If the wire is to have a resistance of R=0.500Ω and all the copper is to be used, what must be (a) the length and (b) the diameter of this wire?