1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lianna [129]
2 years ago
5

A bimetallic strip (brass/steel), which is straight at room temperature, will be immersed in boiling water and allowed to equili

brate. I will then remove the strip and quickly place it on a piece of graph paper to measure the deflection of the end, i.e. how far the end is away from the original line, measured perpendicular to the original line.
The bimetallic strip is 222 mm long. The thickness was measured to be 0.036”.
Predict how far the end will deflect, to the nearest half millimeter.
Physics
1 answer:
lakkis [162]2 years ago
7 0

The thermal expansion of the materials allows to find the deflection of the bimetallist strip is Δy = 3.48 cm

given paramers

    * Bimetallic brass / steel tape

    * Initial temperature, room temperature T = 20ºC

    * Final temperature, boiling water  = 100ºC

    * initial length L₀ = 222mm (1cm / 10mm) = 22.2cm

    * thickness of bimetallic tape e = 0.036 inch (2.54 cm/1 inch) = 0.0914 cm

to find

    * perpendicular deviation or deflection (Δy)

Thermal expansion is the phenomenon of change in the length of a body due to the change in temperature, due to the increase in the length of the atomic and molecular bonds, macroscopically it is described by

        ΔL = α L₀ ΔT

ΔL and ΔT are the variation of the length and temperature respectively, L₀ is the initial length and α the coefficient of expansion ends.

In this case we have a strip formed by two materials with different coefficient of thermal expansion,

Brass       α_{brass}   = 19 10⁻⁶ ºC⁻¹

Steel       α_{steel}    = 11 10⁻⁶ ºC⁻¹

In the attached we can see a diagram of the process, as the temperature increases, the material with greater thermal expansion lengthens more, so the system must curve towards the center of the material with less

thermal expansion. Let's find the length of the strip for each material

brass          L_{f brass} - L₀ = α_{brass} L₀ ΔT

Steel           L_{f steel} - L₀ = \alpha_{steel} L₀ ΔT

Note that the initial length is the same for the two materials and that the strip is in thermal equilibrium at room temperature.

If we assume that we have an arc of circumference, we can write the length of the arc

        θ = L / r

where θ is the angle in radines, L the length of the arc and r the radius of curvature, let's write this equation for each material

brass     L_{f \ brass} =θ r₁

steel      L_{f \ steel} = θ r₂

we substitute in our equations

           θ r₁ - L₀ = α_{brass} L₀ ΔT

           θ r₂ - L₀ = α_{steel} L₀ ΔT

let's subtract the two equations

           θ (r₁- r₂) = L₀ ΔT (α_{brass} - α_{steel})

the thickness of the strip is

           e = r₁ -r₂

           θ = Lo \ \Delta T \ \frac{\alpha_{brass} - \alpha_{steel}}{e}

we calculate

           θ = 22.2 \ (100-20) \ \frac{(19-11) \ 10^{-6}}{0.0914}

           θ = 0.155 rad

Let's use trigonometry to find the perpendicular deflection

          tan θ = Δy / L₀

          Δy = L₀ tan θ

          Δy = 22.2 tan 0.155

          Δy = 3.48 cm

Using the thematic expansion of the two materials we find the deflection of the bimetallist strip is 3.38 cm

Learn more about thermal expansion here: brainly.com/question/18717902

You might be interested in
The valence of aluminum is +3, and the valence of chlorine is –1. The formula for aluminum chloride is correctly written as A. A
zzz [600]
The correct answer is D actually
7 0
3 years ago
Confirm if this is correct or not. If it isn't correct, please correct it.
kow [346]

Answer:

d = 421.83 m

Explanation:

It is given that,

Height, h = 396.9 m

Horizontal speed, v = 46.87 m/s

We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

396.9=0\times t+\dfrac{1}{2}\times 9.8 t^2\\\\t=9\ s

Now d is the distance covered by the cannonball. So,

d=vt\\\\d=46.87\times 9\\\\d=421.83\ m

Hence, this is the required solution.

3 0
2 years ago
Say that you are in a large room at temperature TC = 300 K. Someone gives you a pot of hot soup at a temperature of TH = 340 K.
DiKsa [7]

Answer:0.061

Explanation:

Given

T_C=300 k

Temperature of soup T_H=340 K

heat capacity of soup c_v=33 J/K

Here Temperature of soup is constantly decreasing

suppose T is the temperature of soup at any  instant

efficiency is given by

\eta =\frac{dW}{Q}=1-\frac{T_C}{T}

dW=Q(1-\frac{T_C}{T})

dW=c_v(1-\frac{T_C}{T})dT

integrating From T_H to T_C

\int dW=\int_{T_C}^{T_H}c_v(1-\frac{T_C}{T})dT

W=\int_{T_C}^{T_H}33\cdot (1-\frac{300}{T})dT

W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}

W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]

Now heat lost by soup is given by

Q=c_v(T_C-T_H)

Fraction of the total heat that is lost by the soup can be turned is given by

=\frac{W}{Q}

=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}

=\frac{T_C-T_H-T_C\ln (\frac{T_C}{T_H})}{T_C-T_H}

=\frac{300-340-300\ln (\frac{300}{340})}{300-340}

=\frac{-40+37.548}{-40}

=0.061

4 0
3 years ago
Air, considered an ideal gas, is contained in an insulated piston-cylinder assembly outfitted with a paddle wheel. It is initial
Maru [420]

Our data are,

State 1:

P_1= 10psi=68.95kPa\\V_1 = 1ft^3=0.02831m^3\\T_1 = 100\°F = 310.93K

State 2:

P_2 =5psi=34.474kPa\\V_2 = 3ft^3=0.0899m^3

We know as well that 3BTU=3.16kJ/K

To find the mass we apply the ideal gas formula, which is given by

P_1V_1=mRT_1

Re-arrange for m,

m= \frac{P_1V_1}{RT_1}\\m= \frac{68.95*0.02831}{(0.287)310.9}\\m=0.021893kg=0.04806lbm\\

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

Replacing,

T_2 = \frac{P_2V_2}{P_1V_1}T_1\\T_2 =\frac{34.474*0.0844}{68.95*0.02831}*310.93\\T_2 = 464.217K=375.5\°F

For conservative energy we have, (Cv = 0.718)

W = m C_v = 0.718  \Delta T +dw\\dw = W - mv\Delta T\\dw = 3.16-(0.0218*0.718)(454.127-310.93)\\dw = 0.765kJ=0.72BTU

3 0
2 years ago
How do you find acceleration due to gravity with time and height given?
Feliz [49]

Here, height is given which will be the distance for a freely falling object.

The velocity will be

v=\text{ }\frac{h}{t}

and the acceleration will be

a=\frac{v}{t}

In this way, the formula works.

3 0
10 months ago
Other questions:
  • A soccer player hits a ball with a velocity of 22 m/s at an angle of 36.9 above the horizontal. Air resistance can be ignored. a
    14·1 answer
  • A simple ideal Brayton cycle uses argon as the working fluid. At the beginning of the compression, P1 = 15 psia and T1 = 70°F, t
    14·1 answer
  • Two pans of a balance are 24.1 cm apart. The fulcrum of the balance has been shifted 1.33 cm away from the center by a dishonest
    15·1 answer
  • If a 5 Kg ball is attached to the end of a string, and it has a velocity of 10 m/s, what is the centripetal acceleration if the
    7·1 answer
  • Can someone please help me on this!!!
    15·1 answer
  • There are four coils of wire being used as electromagnets. They all have the same size and are made up of the same material but
    15·1 answer
  • gabriel and arely have performed an experiment and are not sure their results are valid. what should they do to check their resu
    11·2 answers
  • A car accelerates at 2 meters/s/s. Assuming the car starts from rest how far will it travel in 10 seconds
    9·2 answers
  • Once you start pulling your object with less force than friction, what should you expect your object to do? What about when your
    9·2 answers
  • Two children are riding on a merry-go-round. Child A is at a greater distance from the axis of rotation than child B. Which chil
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!