1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
14

A resistor with an unknown resistance is connected in parallel to a 13 ? resistor. when both resistors are connected in parallel

to an emf source of 13 v, the current through the unknown resistor is measured with an ammeter to be 3
a. what is the resistance of the unknown resistor? answer in units of ?.

Physics
1 answer:
DENIUS [597]3 years ago
4 0
Hope this helps you.

You might be interested in
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
3 years ago
In a machine, work output is less than work input because some energy is converted into thermal energy. true or false.
tamaranim1 [39]
True ..........................
7 0
3 years ago
Read 2 more answers
An airplane starts from rest at the end of a runway and accelerates at a constant rate. In the first second, the airplane travel
Licemer1 [7]

Answer:

v=4.44\frac{m}{s}

Explanation:

Given that the airplane starts from the rest (this is initial velocity equals to zero)  and accelerates at a constant rate, position can be described like this: x=v_{0}t +\frac{1}{2} at^{2} where x is the position, t is the time a is the acceleration and v_{0} is initial velocity. In this way acceleration can be found. a=\frac{2(x-v_{0}t) }{t^{2} } =\frac{2(1.11m-0)}{1s^{2} } =2.22\frac{m}{s^{2} }.

Now we are able to found velocity at any time with the formula: v=v_{0} +at = 0\frac{m}{s} +(2.22\frac{m}{s^{2}}.2s)=4.44\frac{m}{s}

3 0
3 years ago
Over a period of operation, the useful work output of the fluorescent bulb was
Nadya [2.5K]

Answer:

199.0521 Will be the answer

5 0
3 years ago
What is the weight of a 225kg space probe on the moon and the acceleration of gravity on the moon is 1.62
olga nikolaevna [1]
<span>364N should be your answer.. hope this helps

</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • All life on earth exists in a region known as
    14·1 answer
  • What are the three longest wavelengths for standing sound waves in a 121-cm-long tube that is (a) open at both ends and (b) open
    12·1 answer
  • How do you find initial velocity?
    13·1 answer
  • A harmonic oscillator begins to vibrate with an amplitude of 1.6 m, but after a time of 1.5 minutes, the amplitude has dropped t
    14·1 answer
  • On Earth, a spring stretches by 5.0 cm when a mass of 3.0 kg is suspended from one end.
    12·2 answers
  • 5. A car accelerates from 0 to 72 km/hour in 8.0 seconds. What is the car's acceleration?
    6·1 answer
  • What is the acceleration of an object that goes from 45m/s to 10 m/s in 5 seconds?
    14·1 answer
  • A car is filled up with 20 gallons of gas. The car uses .25 gallons per minute. How much time will the car travel ?​
    5·1 answer
  • Car A rear ends Car B, which has twice the mass of A, on an icy road at a speed low enough so that the collision is essentially
    14·1 answer
  • What is the length of a pendulum that has a period of 4. 89 seconds?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!