144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
Star clusters is the only thing i can think of that would apply.
I YHINK ITTTSSS SHMMM BBBBB
Answer:
In a chemical reaction, chemical equilibrium is the state in which the forward reaction rate and the reverse reaction rate are equal. The result of this equilibrium is that the concentrations of the reactants and the products do not change.
Explanation:
Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J