Answer:
The correct option is;
2) Thermal energy increases by a factor of R
Explanation:
The equipartition energy theorem states that when molecules are in a state of thermal equilibrium, particles within the system posses equal average energy with each degree of freedom which can be known as energy due to a state of having a particular temperature or thermal energy given by the relation
= Kinetic energy of translation + Kinetic energy of rotation + Energy of vibration
For a mono-atomic gas,
= 3/2·n·R·T
For a diatomic gas,
= 5/2·n·R·T
For a solid element,
= 3·n·R·T
Therefore, as the temperature is doubled, the thermal energy increases by a factor of R.
Answer:
The chemical formula is NaClO and consists of one atom of sodium (Na), one atom of chlorine (Cl) and one atom of oxygen (O).
Molecular Weight/ Molar Mass: 74.44 g/mol
Density: 1.11 g/cm³
Explanation:
1,2-dichloroethane of density 1.23 g/ml would settle down an aqueous solution.
<h3>Density:</h3>
Knowing whether the aqueous layer is above or below the organic layer in the separatory funnel is crucial since it determines which layer is ultimately kept and discarded. Because immiscible solvents have different densities, they will stack on top of one another. The less-dense solution will rest on top, and the more dense one will rest at the bottom.
Due to their low density of less than 1 g/mL, the majority of non-halogenated organic solvents will float on top of an aqueous solution (if they are immiscible). One significant exception is that halogenated solvents will sink below aqueous solutions because they are denser than water (having densities greater than 1 g/mL). Except for halogenated solvents like dichloromethane, which are usually on the bottom, most organic solvents, such as diethyl ether, are on top.
Learn more about aqueous layer here:
brainly.com/question/14356327
#SPJ4
Answer:liquid
Explanation:
The particles in a liquid usually are still touching but there are some spaces between them. The gas particles have big distances between them.
Answer:
1.93 (rounded to nearest .00)
Explanation:
(mass divided by volume)