Answer: They usually have high melting points.
Hope this helps!
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.
Answer:
The mass is 
Explanation:
From the question we are told that
The volume of oxygen produced is 
The temperature is 
The pressure is 
From the ideal gas law we have that

Where R is the gas constant with the value

n is the number of moles making it the subject of the formula

Substituting values


From the chemical equation
one mole of
produces one mole of kCl and
of oxygen
x mole of
produces x mole of kCl and
of oxygen
So 


Now the molar mass of KCl is a constant with a value

Now the mass of KCl is mathematically evaluated as

Substituting values


Hmmm im not sure about this
Answer:
0.18 mol
Explanation:
Given data
Step 1: Convert the temperature to Kelvin
We will use the following expression
K = °C + 273.15
K = 25°C + 273.15
K = 298 K
Step 2: Convert the pressure to atmospheres
We will use the relation 1 atm = 101.3 kPa.

Step 3: Calculate the moles of the gas
We will use the ideal gas equation.
