The quarterback because he needs to be still for that split second while waiting for the ball to reach his hands, while everyone else is free to move when the ball moves
Explanation:
Force Description
1.
It is also known as the weight of an object. It is the force that is exerted on an object due to its mass
2.
It is force which is exerted by a push or a pull on an object. It is also known as applied force.
3.
It is known as resistive force. It opposes the motion of an object.
4.
It is the force which is at a right angle to the surface or perpendicular to the surface.
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
Answer:
This distance is measured from the center of the earth r = 3.4 10⁸ m
Explanation:
The equation for gravitational attraction force is
F = G m1 m2 / r²
Where g is the universal gravitation constant, m are the masses of the body and r is the distance between them, remember that this force is always attractive
Let's write the sum of force on the ship and place the condition that is balanced
F1 -F2 = 0
F1 = F2
Let's write this equation for our case
G m Me / r² = G m Mm / (r'.)²
The distance r is measured from the center of the earth and the distance r' is measured from the center of the moon,
r' = 3.85 10⁸ m
Let's simplify and calculate the distance
Me / r² = Mm / / (3.85 108- r)²
Me / Mm (3.85 108- r)² = r²
√ 81.4 (3.85 108 -r) = r
√ 81.4 3.85 108 = r (1 + √ 81.4)
34.74 108 = r (10.02)
r = 34.74 10⁸ / 10.2
r = 3.4 10⁸ m
This distance is measured from the center of the earth