Answer:
The charge is 
Explanation:
Given that,
Distance = 2.5 mm
Electric field = 800 NC
Length 
We need to calculate the linear charge density
Using formula of linear charge density


Put the value into the formula


We need to calculate the charge
Using formula of charge

Put the value into the formula


Hence, The charge is 
Answer:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. ... increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.
Answer:
-5.24 m/s
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
Explanation:
Hi!
We can solve this problem considering each player as a point particle and taking into account the conservation of linear momentum.
Since the 99.8 kg player is moving towards the 77.8kg, the initial total momentum is:
m1*v1_i + m2*v2_i = (77.8kg)(8.1 m/s) - (99.8kg)(6.9 m/s)
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
The final total momentum is equal to:
m1*v1_f + m2*v2_f = (77.8 kg)v1_f + (99.8 kg)(3.5 m/s)
The conservation of momentu tell us that:
m1v1_i + m2v2_i = m1v1_f + m2v2_f
Therefore:
v1_f =v1_i + (m2/m1)*(v2_i-v2_f)
v1_f = 8.1 m/s + (99.8 / 77.8) * (-6.9 - 3.5 m/s)
<u>v1_f = -5.24 m/s</u>