The Moment of Inertia of the Disc is represented by
. (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- Moment of inertia of the Disk.
- Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (
):


And the resulting equation is:



The moment of inertia of the Disc is represented by
. (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
I believe it’s a liquid inside a beaker on a hot Bunsen burner (c)
This is because : Everyday Examples of Convection
Boiling water - The heat passes from the burner into the pot, heating the water at the bottom. Then, this hot water rises and cooler water moves down to replace it, causing a circular motion. Radiator - Puts warm air out at the top and draws in cooler air at the bottom.
Not sure if it’s right tho!
Answer:
36.87 km/h
Explanation:
Convert all the units in SI system
1 mile = 1609.34 m
d1 = 6 mi = 9656.04 m
t1 = 15 min = 15 x 60 = 900 s
d2 = 3 mi = 4828.02 m
t2 = 10 min = 10 x 60 = 600 s
d3 = 1 mi = 1609.34 m
t3 = 2 min = 2 x 60 = 120 s
d4 = 0.5 mi = 804.67 m
t4 = 0.5 min = 0.5 x 60 = 30 s
Total distance, d = d1 + d2 + d3 + d4
d = 9656.04 + 4828.02 + 1609.34 + 804.67 = 16898.07 m = 16.898 km
total time, t = t1 + t2 + t3 + t4
t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h
The ratio of the total distance covered to the total time taken is called average speed.
Average speed = 16.898 / 0.4583 = 36.87 km/h
The free electrons in metals can move through the metal, all while receiving and losing electrons, allowing metals to conduct electricity. Example: copper is a great conductor of electric current.
That's unaccelerated motion,
and constant velocity.