To convert the formula unit to mass, we need to divide the given formula units by Avogadro's number, 6.022 x 10^23 and we get the mole of beryllium nitrate. To convert to mass, we need to multiply the number of moles with the molecular formula of the compound which is 133.022 g/mol.The answer is 0.006185 g or 6.185 mg.
Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
3.65 X 10 to the power of 8
Answer:
Yes.
The nuclear equation {226/88 Ra → 222/26 Rn + 4/2 He} is balanced. As we know that an alpha particle is identical to a helium atom. This implies that if an alpha particle is eliminated from an atom's nucleus, an atomic number of 2 and a mass number of 4 is lost.
Therefore, the equation will be reduced to:
226 - 4 = 222
88 - 2 = 86
Hence, the equation is balanced.
Explanation:
It should be Cl
next to the capital C is an L btw