Answer:D
Explanation:
The high boiling point of HF is not attributable to the dispersion forces mentioned in the question. In HF, a stronger attraction is in operation, that is hydrogen bonding. This ultimately accounts for the high boiling point and not solely the dispersion model as in F2.
<em>Answer:</em>
<em>An Atom can turn into both solid and liquid form depending on the temperature of its surroundings </em>
<em>Explanation:</em>
<em>Scientists have discovered a new state of physical matter in which atoms can exist as both solid and liquid simultaneously.
Researchers have found, however, that some elements can, when subjected to extreme conditions, take on the properties of both solid and liquid states.</em>
Answer:
Hello
Explanation:
Can you pls tell me which language is this.... Sorry... But pls tell me it in English
Answer: D
Explanation:
This is the answer because everyone knows he discovered gravity and he conducted scientific experiments to prove them which he also used math for
Hope this helps
Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.