Answer: Option (A) is the correct answer.
Explanation:
Condensation is defined as the process in which vapors or gaseous phase changes into liquid phase.
Freezing is the process in which liquid phase changes into solid phase.
Evaporation is the process in which liquid phase changes into vapors or gaseous phase.
Melting is the process in which solid phase changes into liquid phase.
Therefore, we can conclude that names for given phase changes A and B is that A is condensation and B is freezing.
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
I think the answer is 1.25 grams actually i think i’m wrong
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?

Initial mole of Co(NO3)2 

Mole of Co(NO3)2 in final solution

Mole of NO3- in final solution = 2 x Mole of Co(NO3)2

Mass of NO3- in final solution is mole x Molar mass of NO3

I really don’t know the answer, please help this kiddo with his question