Answer:
The acceleration of the crate is 
Explanation:
Recall the formula that relates force,mass and acceleration from newton's second law;

Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:

Answer:
a. The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. -9.19° = 350.81° from the the positive x-axis
Explanation:
The initial velocity v₁ of the fish is v₁ = 4.00i + 1.00j m/s. Its final velocity after accelerating for t = 19.0 s is v₂ = 17.0i - 1.00j m/s
a. The acceleration a = (v₂ - v₁)/t = [17.0i - 1.00j - (4.00i + 1.00j)]/19 = [(17.0 -4.0)i - (-1.0 -1.0)j]/19 = (13.0i - 2.0j)/19 = 0.68i - 0.11j m/s²
The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. The direction of the acceleration relative to the unit vector i,
tanθ = a₂/a₁ = -0.11/0.68 = -0.1618
θ = tan⁻¹(-0.1618) = -9.19° ⇒ 360 + (-9.19) = 350.81° from the the positive x-axis
Answer:
vacuole
Explanation:
Remember vacuoles in plant cells are a lot bigger than there animal cell counterparts.
Answer:
Explanation:
= v/f
^That is the formula we are going to use.
Now, we were given the speed (v), which is 20.
Now we need to find frequency, in order to solve for the wavelength.
Frequency is the amount of waves in a fixed unit of one second, meaning our F value is the value of 5 divided by 4.
5/4 = 1.25
Therefore our F is 1.25
Now lets plug it in
= v/f
= 20/1.25
= 16
Conversion:
= 8
Answer:
0.47 J
Explanation:
The elastic potential energy of a spring is given as,
E = 1/2ke²........................ Equation 1
Where E = Elastic potential energy, k = spring constant, e = extension/compression.
Given: k = 15 N/m, e = 0.25 m.
Substitute into equation 1.
E = 1/2(15)(0.25)²
E = 0.46875
E ≈ 0.47 J.
Hence the elastic potential energy stored in the spring = 0.47 J