Answer:
Explanation:
.......................................................................................................................
Explanation:
≈4.8
There really isn't an elegant way to express it. Just plug and chug for irrationals raised to other irrationals.
Answer:
option c is correct
47.2%
Explanation:
given data
consisting of refrigerant = 134 a
volume V = 0.01 m³/kg
pressure P = 1MPa = 1000 kPa
to find out
quality of the R 134a
solution
we will get here value of volume Vf and Vv from pressure table 60 kpa to 3 Mpa for 1 Mpa of R134 a
that is
Vf = 0.0008701 m³/kg
Vv = 0.0203 m³/kg
so we will apply here formula that is
quality = (V - Vf) / (Vv - Vf) ............1
put here value
quality = (0.01 - 0.0008701 ) / ( 0.0203 - 0.0008701 )
quality = 0.4698
so quality is 47 %
SO OPTION C IS CORRECT
Answer:
5.1 Personnel Security. ...
5.2 Physical and Environmental Protection. ...
5.3 Production, Input and Output Controls. ...
5.4 Contingency Planning and Disaster Recovery. ...
5.5 System Configuration Management Controls. ...
5.6 Data Integrity / Validation Controls. ...
5.7 Documentation. ...
5.8 Security Awareness and Training.
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W