We can’t see the attachment :(
calculate the power per hour of a radiator, knowing that it is connected to a common 110 v contact. and requires 20 Amp.
Answer:
2.2kWh
Explanation:
Given parameters:
Potential difference = 110v
Current = 20A
Unknown:
Power = ?
Solution:
To solve this problem, we use the expression below:
Power = IV
Power = 110 x 20 = 2200W
This is therefore 2.2kW
Power per hour = 2.2kWh
Answer:
E = ρ ( R1²) / 2 ∈o R
Explanation:
Given data
two cylinders are parallel
distance = d
radial distance = R
d < (R2−R1)
to find out
Express answer in terms of the variables ρE, R1, R2, R3, d, R, and constants
solution
we have two parallel cylinders
so area is 2
R × l
and we apply here gauss law that is
EA = Q(enclosed) / ∈o ......1
so first we find Q(enclosed) = ρ Volume
Q(enclosed) = ρ (
R1² × l )
so put all value in equation 1
we get
EA = Q(enclosed) / ∈o
E(2
R × l) = ρ (
R1² × l ) / ∈o
so
E = ρ ( R1²) / 2 ∈o R
Answer:

Explanation:
To calculate the force we need to use this equation

where L is the total length of the wire
So in this case the small element of current is

Because x is the direction of the current flow.
As is said in the problem B is such that
![\vec{B} = B \hat{j} = 0.62\hat{j} [ T]](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%20B%20%5Chat%7Bj%7D%20%3D%200.62%5Chat%7Bj%7D%20%5B%20T%5D)
so to use the equation above we first calculate the following cross product:

so the force:
So here we use the fact that B=0 in any point of the x axis that is not
, that means that we only need to do the integration between a very short distant behind the point
and a very short distant after that point, meaning:

so is the same as evaluating
at 
that is:




5.6 which would be acidic!