Tensile strength is the amount of tension a material can hold, at least I hope that’s what it is.
Answer:
a)
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
the required distance is 40.98 m
Explanation:
Given that;
velocity of the river u = 1.70 m/s
velocity of boat v = 14.0 m/s
Now to get the velocity of the boat relative to shore;
( north of east), we say
a² + b² = c²
(1.70)² + (14.0)² = c²
2.89 + 196 = c²
198.89 = c²
c = √198.89
c = 14.1028 m/s
tan∅ = v/u = 14 / 1.7 = 8.23529
∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east
Therefore, the velocity of the boat relative to shore is;
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
width of river = 340 m,
ow far downstream has the boat moved by the time it reaches the north shore in meters = ?
we say;
340sin( 90° - 83.0765°)
⇒ 340sin( 6.9235°)
= 40.98 m
Therefore, the required distance is 40.98 m
Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.
Answer:
Around 2.8212 sec
Explanation:
Given the eqn x=1/2at^2+vot
your vo=0
39=1/2(-9.8)t^2
=7.95=t^2
=2.82sec
Answer:
440hz
Explanation:
saxophone a plays at 430hz and a frequency of 5 beats per second can be heard so saxophone b is playing at a frequency 10hz louder than saxophone A making it 440hz