1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
3 years ago
11

Which chemical equation represents a double replacement reaction?

Physics
1 answer:
liq [111]3 years ago
5 0

D. NaOH + HCI NaCl + H,0

Explanation:

The last option is a double displacement/replacement reaction.

This reaction is a neutralization reaction in which an acid combines with a base to produce salt and water only.

       NaOH    +   HCl   →   NaCl  + H₂O

  • A double displacement reaction is one that occurs between ionic compounds.
  • In this reaction, there is an actual exchange of reaction partners.

One of the following conditions serves as a driving force;

  • Formation of water or any other non-ionizing compound
  • Liberation of gases
  • Formation of a precipitate

learn more:

Precipitate formation brainly.com/question/8896163

#learnwithBrainly

You might be interested in
Small, slowly moving spherical particles experience a drag force given by Stokes' law: Fd = 6πηrv where r is the radius of the p
Dominik [7]

Answer:

Explanation:

At the time of a body achieving terminal velocity, the drag force becomes equal to the weight of the body less the buoyant force by the surrounding medium which can be represented by the following equation

\frac{4\pi\times r^3(d-\rho)}{3} =6\pi\times n\times r\times v

Where r is radius of the body , d is density of the material of the body σ is density of the medium and n is coefficient of viscosity of the medium and v is terminal velocity.

Simplifying

v = \frac{2\times r^2(d-\rho)}{9\times n}

Assuming the value of density of air as 1.225 kg/m³ and putting other given values in the formula we get

v = [tex]\frac{2\times (1.2\times10^{-5})^2(2182-1.225)}{9\times 1.8\times10^{-5}}[/tex]

v = 387 x 10⁻⁵ m/s

Terminal velocity = 387 x 10⁻⁵ m/s

Time taken to fall a distance of 100 m

= \frac{100}{387\times10^{-5}}

= 2.6 x 10⁴ s.

5 0
3 years ago
Read the scenario. A car travels 25 m/s forward for 10 s. Which option accurately identifies the measurements within the scenari
Phantasy [73]

Explanation:

It is given that,

A car travels 25 m/s forward for 10 s.

Solution,

For a vector, a quantity must have both magnitude as well as the direction. For a scalar, a quantity have only the magnitude. In this case, the car moves in forward direction.  This is the only difference between the vector and the scalar.

Out of given option,s the correct option is (c) "The measurement 25 m/s is the only vector quantity because it is a measurement of speed".

5 0
3 years ago
What is the difference between flashing point, boiling point and melting point​
sp2606 [1]
<h3><u>Answer and explanation;</u></h3>
  • <u>Melting point</u> is defined as the temperature at which solid and liquid phases are in equilibrium. It is the temperature at which a solid changes state from solid to liquid at atmospheric pressure.
  • <u>Boiling poin</u>t is the temperature at which the vapour pressure of a liquid is equal to the external pressure. It is the temperature at which a substance changes from a liquid into a gas.
  • <u>The flash point </u>of a flammable liquid or volatile liquid is the lowest temperature at which it can form an ignitable mixture in air. At this temperature the vapor may cease to burn when the source of ignition is removed.
8 0
3 years ago
Read 2 more answers
What is a non contact force that attracts all objects to the centre of the earth
beks73 [17]

Answer:

<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>

<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>

4 0
3 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
3 years ago
Other questions:
  • Water waves in a small tank are .06 m long. They pass a given point at a rate of 14.8 waves every three seconds. What is the spe
    8·1 answer
  • 1. A 700kg racecar slowed from 30m/s to 15 m/s. What was its change in Momentum? 2. If the car in the above problem took 5 secon
    14·1 answer
  • The average kinetic energy of particles in an object is also known as _________.
    8·1 answer
  • (PLS HELP 20 POINTS, IM TOO DUMB FOR THIS) What is the total momentum of the system after the collision?​
    13·1 answer
  • What is a prediction​
    10·2 answers
  • Need help on all three pizza?
    13·1 answer
  • A 5.0 c charge is 10 m from a small test charge. what is the magnitude of the electric field at the location of the test charge
    11·1 answer
  • Which groups on the periodic table contain metalloids?
    14·2 answers
  • A ball is dropped from rest. Its energy is transformed from ________.
    12·1 answer
  • (NO LINKS) A carpenter strikes a nail with a hammer, pushing it into wood.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!