<u>We are given:</u>
Mass of the rocket = 10 kg
Weight of the Rocket = 100 N
Upward thrust applied by the rocket = 400 N
<u>Net upward force on the rocket:</u>
We are given that gravity pulls the rocket with a force of 100 N
Also, the rocket applied a force of 400N against gravity
Net upward force = Upward thrust - Force applied by gravity
Net upward force = 400 - 100
Net upward force = 300 N
<u>Upward Acceleration of the Rocket:</u>
From newton's second law:
F = ma
<em>replacing the variables</em>
300 = 10 * a
a = 30 m/s²
Never too early to start searching. Do some research about student savings versus parent savings though. If a student has savings, they will make you use it to pay for college, while the same amount of savings in the parents name may be exempt. Check it out.
Answer:
B) 3.50 m/s
Explanation:
The linear velocity in a circular motion is defined as:

The angular frequency (
) is defined as 2π times the frequency and r is the radius, that is, the distance from the center of the circular motion.

Replacing (2) in (1):

We have to convert the frequency to Hz:

Finally, we calculate how fast is the child moving:

Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.