Answer:
0.2
Explanation:
The given parameters are;
The acceleration of the train, a = 0.2·g
The mass of the person standing on the train = m
Let μ represent the coefficient of static friction, we have;
The force acting on the person, F = m × a = m × 0.2·g
The force of friction acting between the feet and the floor,
= m·g·μ
For the person not to slide we have;
The force acting on the person = The force of friction acting between the feet and the floor
F = 
∴ m × 0.2·g = m·g·μ
From which we get;
0.2 = μ
The coefficient of static friction that must exist between the feet and the floor if the person is not to slide, μ = 0.2.
<span>If my memory serves me well, sensory receptors which would lead you to squint in bright light are called </span><span>C. photoreceptors</span>
The stage where atoms are spread out and bouncy is the gas stage.
A mature thunderstorm will contain both updraft and downdrafts. The given statement is true.
When the cumulus cloud becomes very large, the water in it becomes large and heavy. Raindrops start to fall through the cloud when the rising air can no longer hold them up. Meanwhile, cool dry air starts to enter the cloud. Because cool air is heavier than warm air, it starts to descend in the cloud (known as a downdraft). The downdraft pulls the heavy water downward, making rain.
This cloud has become a cumulonimbus cloud because it has an updraft, a downdraft, and rain. Thunder and lightning start to occur, as well as heavy rain. The cumulonimbus is now a thunderstorm cell.
In any case, your mass would be<em> 68 kg </em>no matter what