Your minimum selling price must be HIGHER THAN your variable costs
Answer:
(a) 2.5 ksi
(b) 0.1075 in
Explanation:
(a)

Making
the subject then

where
is the stress and
is the strain
Since strain is given as 0.025% of the length then strain is 
Now substituting E for
then

(b)
Stress,
making A the subject then


where d is the diameter and subscripts o and i denote outer and inner respectively.
We know that
where t is thickness
Now substituting



But the outer diameter is given as 2 in hence



As already mentioned, 

Answer:
The time necessary to purge 95% of the NaOH is 0.38 h
Explanation:
Given:
vfpure water(i) = 3 m³/h
vNaOH = 4 m³
xNaOH = 0.2
vfpure water(f) = 2 m³/h
pwater = 1000 kg/m³
pNaOH = 1220 kg/m³
The mass flow rate of the water is = 3 * 1000 = 3000 kg/h
The mass of NaOH in the solution is = 0.2 * 4 * 1220 = 976 kg
When the 95% of the NaOH is purged, thus the NaOH in outlet is = 0.95 * 976 = 927.2 kg
The volume of NaOH in outlet after time is = 927.2/1220 = 0.76 m³
The time required to purge the 95% of the NaOH is = 0.76/2 = 0.38 h
Answer:
a. 51.84Kj
b. 2808.99 W/m^2
c. 11.75%
Explanation:
Amount of heat this resistor dissipates during a 24-hour period
= amount of power dissipated * time
= 0.6 * 24 = 14.4 Watt hour
(Note 3.6Watt hour = 1Kj )
=14.4*3.6 = 51.84Kj
Heat flux = amount of power dissipated/ surface area
surface area = area of the two circular end + area of the curve surface

= 2.136 *10^-4 
Heat flux =
= 2808.99 
fraction of heat dissipated from the top and bottom surface

=11.75%