Answer:
component of acceleration are a = 3.37 m/s² and ar = 22.74 m/s²
magnitude of acceleration is 22.98 m/s²
Explanation:
given data
velocity = 10 m/s
initial time to = 0
distance s = 400 m
time t = 14 s
to find out
components and magnitude of acceleration after the car has travelled 200 m
solution
first we find the radius of circular track that is
we know distance S = 2πR
400 = 2πR
R = 63.66 m
and tangential acceleration is
S = ut + 0.5 ×at²
here u is initial speed and t is time and S is distance
400 = 10 × 14 + 0.5 ×a (14)²
a = 3.37 m/s²
and here tangential acceleration is constant
so velocity at distance 200 m
v² - u² = 2 a S
v² = 10² + 2 ( 3.37) 200
v = 38.05 m/s
so radial acceleration at distance 200 m
ar = 
ar = 
ar = 22.74 m/s²
so magnitude of total acceleration is
A = 
A = 
A = 22.98 m/s²
so magnitude of acceleration is 22.98 m/s²
Answer:
Method B is the more efficient way of heating the water.
Explanation:
Method B is more efficient because by placing a heating element in the water as in described in method B, the heat that is lost to the surroundings is minimized which implies that more heat is supplied directly to the water. Therefore, more heating is achieved with a lesser amount of electrical energy input. Whereas placing the pan on a range means more heat losses to the surrounding and as such it will take a longer time for the water to heat up and also take more electrical energy.
Answer:
15 000 000 Ohms
Explanation:
1 Mega Ohm = 1 000 000 Ohms
So,
15 Mega ohms =15 000 000 Ohms
Answer:
I would say 10000;1 but thats just me
Explanation: