Symbiotic Relationship.
Hope this helps.
Answer:
Protein B has a higher affinity for ligand C than protein A
Explanation:
Binding affinity is a measure of the strength of the bonds or interactions between a single biomolecule or receptor to its ligand. A ligand is usually a small molecule that binds to a specific receptor.
The receptor is usually a large molecule that contains a specific site for the binding of ligand.
Binding affinity is usually measured by the equilibrium dissociation constant (KD). The equilibrium dissociation constant KD is a ratio of the dissociation and the association of ligand to the receptor. The value of KD is used to evaluate and compare the strengths of bimolecular interactions. The larger the KD value, the more weakly the target molecule and ligand are attracted to and bind to one another.
The higher the dissociation constant (KD), the weaker the affinity is between the interacting molecules, whereas, the smaller the KD value, the greater the binding affinity of the ligand for its target.
Protein B has a KD value of 10⁻⁹ M while Protein A has a KD of 10⁻⁶ M.
Ration of KD of protein B to protein A = 10⁻⁹ M/10⁻⁶ M = 10⁻³
Therefore, protein B has a KD value which is 1000 times smaller than the KD of protein A.
Ribosomes - Make protein
Golgi Apparatus - Make, process, and package proteins
Nucleus - Stores the DNA and coordinates the cell's activities
Mitochondria - Make energy out of food
Vacuole - Storage for food and water
Lysosome - Contains digestive enzymes that help break down food
Plant cells (only) -
Cell wall - Protection and support
Chloroplast - Uses sunlight to create food using photosynthesis
I hope this helps :)
This indicates a possible problem with the ribosome of the cell. Ribosomes in cells are responsible for translation the genetic codes in mRNA to appropriate proteins with the help of tRNA. mRNA, rRNA, tRNA and ribosome work together during protein synthesis to produce chains of amino acids that are linked together by polypeptide bonds.
Answer:
The greatest changes to the path and strength of the Gulf Stream might be caused by an increase in the volume of river water that flows into the Gulf of Mexico (Option B)
Explanation:
The North Atlantic current or Gulf Stream carries warm water from the Gulf of Mexico forward Europe, providing a relative template clime in most of the European occident.
Ocean streams are sensitive to the amount of freshwater available on the surface. An increase in overflow and precipitation over the ocean could slow or revert the north Atlantic current, blocking warm water flow to Europe.
The deposition of freshwater could cause a temporal deceleration or total collapse of the North Atlantic Current, and this interruption might lead to very cold periods in the North Atlantic.