1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
5

Two sites are being considered for wind power generation. On the first site, the wind blows steadily at 7 m/s for 3000 hours per

year. On the second site, the wind blows steadily at 10 m/s for 2000 hours per year. The density of air on the both sites is 1.25 kg/m3 . Assuming the wind power generation is negligible during other times.Calculate the maximum power of wind on each site per unit area, in kW/m2 .
Engineering
1 answer:
kirill [66]3 years ago
5 0

Solution :

Given :

$V_1 = 7 \ m/s$

Operation time, $T_1$ = 3000 hours per year

$V_2 = 10 \ m/s$

Operation time, $T_2$ = 2000 hours per year

The density, ρ = $1.25 \ kg/m^3$

The wind blows steadily. So, the K.E. = $(0.5 \dot{m} V^2)$

                                                             $= \dot{m} \times 0.5 V^2$

The power generation is the time rate of the kinetic energy which can be calculated as follows:

Power = $\Delta \ \dot{K.E.} = \dot{m} \frac{V^2}{2}$

Regarding that $\dot m \propto V$. Then,

Power $ \propto V^3$ → Power = constant x $V^3$

Since, $\rho_a$ is constant for both the sites and the area is the same as same winf turbine is used.

For the first site,

Power, $P_1= \text{const.} \times V_1^3$

            $P_1 = \text{const.} \times 343 \ W$

For the second site,

Power, $P_2 = \text{const.} \times V_2^3 \ W$

           $P_2 = \text{const.} \times 1000 \ W$

You might be interested in
function summedValue = SummationWithLoop(userNum) % Summation of all values from 1 to userNum summedValue = 0; i = 1; % Write a
Alexeev081 [22]

Answer:

function summedValue = SummationWithLoop(userNum)

% Summation of all values from 1 to userNum

  summedValue = 0;

  i = 0;

  % use a while loop that assigns summedValue with the

  % sum of all values from 1 to userNum

  while(i <= userNum)

      summedValue = summedValue + i;

      i = i + 1;

  end

end

8 0
3 years ago
(30 pts) A simply supported beam with a span L=20 ft and cross sectional dimensions: b=14 in; h=20 in; d=17.5 in. is reinforced
Nat2105 [25]

Answer:

Zx = 176In³

Explanation:

See attached image file

5 0
3 years ago
When it comes to making a good impression in a work setting, it does not apply to an initial contact, since both people are meet
Art [367]

Answer:

you have only seconds in which a person will accept or reject an employee or firm

Explanation:

First impression matters that's why when looking for employment with an organisation, lack of a tie for men may lead to automatic rejection. You have to be smart both intellectually and physically. Therefore, it means that you have only seconds in which a person will accept or reject an employee or firm.

4 0
3 years ago
Select three types of lines that engineers use to help represent the shape of a design in a sketch.
Vikki [24]

Hidden lines

  • Used to describe the in shown lines (like diagonals inside cubes)

Extension lines:-

  • Used to explain the expansion of structures like building

Object lines

  • Used to describe the structure of objects and the lining to show borders
7 0
2 years ago
Unit for trigonometric functions is always "radian". 1. 10 points: Do NOT submit your MATLAB code for this problem (a) Given f(x
RoseWind [281]

Answer:

Below is the required code.

Explanation:

%% Newton Raphson Method

clear all;

clc;

x0=input('Initial guess:\n');

x=x0;

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=10;

i=0;

cc=input('Condition of convergence:\n');

while ep>=cc

i=i+1;

temp=x;

x=x-(f/g);

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=abs(x-temp);

fprintf('x = %6f and error = %6f at iteration = %2f \n',x,ep,i);

end

fprintf('The solution x = %6f \n',x);

%% End of MATLAB Program

Command Window:

(a) First Root:

Initial guess:

1.5

Condition of convergence:

0.01

x = -1.815662 and error = 3.315662 at iteration = 1.000000

x = -0.644115 and error = 1.171547 at iteration = 2.000000

x = 0.208270 and error = 0.852385 at iteration = 3.000000

x = 0.434602 and error = 0.226332 at iteration = 4.000000

x = 0.451631 and error = 0.017029 at iteration = 5.000000

x = 0.451732 and error = 0.000101 at iteration = 6.000000

The solution x = 0.451732

>>

Second Root:

Initial guess:

3.5

Condition of convergence:

0.01

x = 3.300299 and error = 0.199701 at iteration = 1.000000

x = 3.305650 and error = 0.005351 at iteration = 2.000000

The solution x = 3.305650

>>

(b) Guess x=0.5:

Initial guess:

0.5

Condition of convergence:

0.01

x = 0.450883 and error = 0.049117 at iteration = 1.000000

x = 0.451732 and error = 0.000849 at iteration = 2.000000

The solution x = 0.451732

>>

Guess x=1.75:

Initial guess:

1.75

Condition of convergence:

0.01

x = 227.641471 and error = 225.891471 at iteration = 1.000000

x = 218.000998 and error = 9.640473 at iteration = 2.000000

x = 215.771507 and error = 2.229491 at iteration = 3.000000

x = 217.692636 and error = 1.921130 at iteration = 4.000000

x = 216.703197 and error = 0.989439 at iteration = 5.000000

x = 216.970438 and error = 0.267241 at iteration = 6.000000

x = 216.971251 and error = 0.000813 at iteration = 7.000000

The solution x = 216.971251

>>

Guess x=3.0:

Initial guess:

3

Condition of convergence:

0.01

x = 3.309861 and error = 0.309861 at iteration = 1.000000

x = 3.305651 and error = 0.004210 at iteration = 2.000000

The solution x = 3.305651

>>

Guess x=4.7:

Initial guess:

4.7

Condition of convergence:

0.01

x = -1.916100 and error = 1.051861 at iteration = 240.000000

x = -0.748896 and error = 1.167204 at iteration = 241.000000

x = 0.162730 and error = 0.911626 at iteration = 242.000000

x = 0.428332 and error = 0.265602 at iteration = 243.000000

x = 0.451545 and error = 0.023212 at iteration = 244.000000

x = 0.451732 and error = 0.000187 at iteration = 245.000000

The solution x = 0.451732

>>

Explanation:

The two solutions are x =0.451732 and 3.305651 within the range 0 < x< 5.

The initial guess x = 1.75 fails to determine the solution as it's not in the range. So the solution turns to unstable with initial guess x = 1.75.

7 0
3 years ago
Other questions:
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    11·1 answer
  • Sea X una variable aleatoria con funci´on de densidad
    9·1 answer
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • A pressure cylinder has an outer diameter 200 mm, maximum external pressure 4 MPa, and maximum allowable shear stress 27.5 MPa.
    13·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • A six-lane multilane highway (three lanes in each direction) has a peak-hour factor of 0.90, 11-ft lanes with a 4-ft right-side
    11·1 answer
  • Sam, a carpenter, is asked to identify the abilities he has that are important to his work. What are the top abilities he might
    9·2 answers
  • Which design activity is part of the design for manufacturability (DFM) methodology?
    10·1 answer
  • A window‐mounted air‐conditioning unit (AC) removes energy by heat transfer from a room, and rejects energy by heat transfer to
    13·1 answer
  • based on the graph shown, for any given output level, the veritcal distance between the avc and the atc curves represents
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!