Answer:
Time = t = 6.62 s
Explanation:
Given data:
Height = h = 215 m
Initial velocity =
= 0 m/s
gravitational acceleration = g = 9.8 m/s²
Time = t = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero.

t² = 
t =
t = 
t = 6.62 s
Answer:
Potential energy plus kinetic energy equals mechanical energy because mechanical energy is basically just all of an object's energy, it's just two kinds of energy. The potential is stored inside and kinetic is being used. Both of those together is the total amount of the objects energy, which is the mechanical energy.
Explanation:
Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM
Explanation:
Mass of bumper cars, 
Initial speed of car A, 
Initial speed of car Z, 
Final speed of car A after the collision, 
We need to find the velocity of car Z after the collision. Let it is equal to
. Using the conservation of momentum as :




So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.