Answer:- solution boiling point = 102.23 degree C (102 degree C with three sig figs).
Solution:- When a non volatile solute is added to a solvent then boiling point increases. Elevation in boiling point is directly proportional to the molality of the solution.
The equation is:

where,
is the elevation in boiling point, i is the Van't hoff factor,
is the molal elevation constant and m is the molality.
Value of i is 1 as ethylene glycol is a covalent molecule that does not break to give ions.
for water is
.
We can calculate the molality from the given grams of ethylene glycol and liters of water as molality is moles of solute per kg of solvent.
Molar mass of ethylene glycol is 62 gram per mol and density of water is 1.00 kg per liter.

= 2.50 kg
Let's calculate the moles of ethylene glycol.

= 10.9 mol
molality of the solution = 
= 4.36m
Let's plug in the values in the equation we have on the top for elevation in boiling point.

= 
Boiling point of pure water is 100 degree C. So, the boiling point of the solution = 100 + 2.23 = 102.23 degree C
(If we fix the three sig figs then it could be written as 102 degree C.)
Answer:
10B has 18.9%
11B has 81.1%
Explanation:Please see attachment for explanation
Answer:
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Explanation:
Mass of silver to be precipitated on ecah spoon = 0.500 g
Number of silver spoons = 250
Total mass of silver = 250 × 0.500 g = 125 g

Moles of AgCN = n = 
Volume of AgCN solution =V
Molarity of the AgCN = 2.50 M

(1 L = 1000 mL)
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Fluid and air flows around you and tries to crush you in but Fortunately, there is typically just as much pressure inside your body pressing outward as there is air pressure outside your body pushing inward. They typically cancel out, meaning that there is no overall force on you and you don't get crushed.