Option d: copper.
Because copper is an element, not a mixture.
Most people<span> know that heavy </span>alcohol drinking can<span> cause health problems. ... </span>Drinking<span>and smoking together raises the </span>risk of these cancers<span> far more .... caused by some </span>cancer<span> treatments, and </span>can even make<span> them </span>worse<span>.</span>
Answer:
Weigh the empty crucible, and then weigh into it between 2 g and 3 g of hydrated copper(II) sulphate. Record all weighings accurate to the nearest 0.01 g.
Support the crucible securely in the pipe-clay triangle on the tripod over the Bunsen burner.
Heat the crucible and contents, gently at first, over a medium Bunsen flame, so that the water of crystallisation is driven off steadily. The blue colour of the hydrated compound should gradually fade to the greyish-white of anhydrous copper(II) sulfate. Avoid over-heating, which may cause further decomposition, and stop heating immediately if the colour starts to blacken. If over-heated, toxic or corrosive fumes may be evolved. A total heating time of about 10 minutes should be enough.
Allow the crucible and contents to cool. The tongs may be used to move the hot crucible from the hot pipe-clay triangle onto the heat resistant mat where it should cool more rapidly.
Re-weigh the crucible and contents once cold.
Calculation:
Calculate the molar masses of H2O and CuSO4 (Relative atomic masses: H=1, O=16, S=32, Cu=64)
Calculate the mass of water driven off, and the mass of anhydrous copper(II) sulfate formed in your experiment
Calculate the number of moles of anhydrous copper(II) sulfate formed
Calculate the number of moles of water driven off
Calculate how many moles of water would have been driven off if 1 mole of anhydrous copper(II) sulfate had been formed
Write down the formula for hydrated copper(II) sulfate.
#*#*SHOW FULLSCREEN*#*#
Explanation:
Answer:
Yes
Explanation:
A supercritical fluid has good properties for both liquid and as for extraction properties, the advantages then include:
- The fact that it has a lower viscosity than liquid CO2 allowing it to move through and around coffee beans more thoroughly with creating back pressure
- Its density is comparable to that of liquid CO2 meaning there is much CO2 per litre as there is liquid form making it more efficient
- It has a higher diffusivity than liquid CO2 which aids with penetration of the coffee beans on a molecular level
This experiment would not work with tea leaves because they also contain caffeine
P=nRTV
hope this help<span />