Answer:
option (d) is false.
Explanation:
Acid dissociation equilibrium of HCN is represented as-

Acid dissociation constant,
, is represented as-
![K_{a}=\frac{[H^{+}][CN^{-}]}{[HCN]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCN%5E%7B-%7D%5D%7D%7B%5BHCN%5D%7D)
where species inside third bracket represents equilibrium concentrations of respective species
So, evidently, presence of excess
(or NaCN) in solution will combine with
to produce HCN. Hence
will be larger that it would be if only the HCN solution were present.
According to Le-chatlier principle, addition of HCN will shift equilibrium towards right and addition of NaCN will shift equilibrium towards left to keep constant
value at a particular temperature.
NaOH gives acid-base reaction with HCN to produce NaCN and water. So, addition of NaOH will increase concentration of
and decrease concentration of HCN
Explanation:
The speed of molecules increases when temperature is increased as it will result in more number of collisions between the molecules. Thus, there will be increase in kinetic energy of molecules and increase in the speed of solvent molecules.
Whereas on decreasing the temperature, the kinetic energy of molecules will decrease. This will result in less number of collisions between the molecules. Therefore, the speed of solvent molecules will slow down.
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles.
Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.