Answer:
2HClO4(aq) + Ca(OH)2(aq) → Ca(ClO4)2(aq) + 2H2O(l)
Perchloric acid + Calcium hydroxide → Calcium perchlorate + Water.
Explanation:
This is a neutralization reaction where the acid, Perchloric acid reacts completely with an appropriate amount of base, aqueous Calcium hydroxide to produce salt, aqueous Calcium perchlorate and water, liquid H2O only.
During this reaction, the hydrogen ion, H+, from the HClO4 is neutralized by the hydroxide ion, OH-, from the Ca(OH)2 to form the water molecule, H2O.
Thus, it is called a neutralization reaction.
During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.
<span>2H2 + O2 → 2H2O</span>
<span>
</span>
<span>okay???</span>
<span>
</span>
Answer:
Early-warning systems are essential in the case of hurricanes, severe thunderstorms, tornadoes, tsunamis, and volcanoes. All of these can wreak havoc! Let’s take a look at how meteorologists forecast these events and how early-warning systems can help us protect ourselves if we are in their paths.
Explanation:
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>