Answer:
The image result of an object reflected by a convex mirror is typically virtual, upright, and smaller. Discover how moving the object farther away from the mirror's surface affects the size of the virtual image formed behind the mirror
Explanation:
Answer: 75.02 m
Explanation:
u = 0 ( starts from rest )
v = 50 m/s
t = 3 s
( i ) a = v - u / t
= 50 - 0 /3
= 16.67
( ii ) s = ut + 1/2 at²
= 0 × 3 + 1/2 × 16.67 × 3 × 3
= <u>75.02 m</u>
Hope this helps...
Answer:
The rotation of a planet around it's sun
To keep<span> noise from entering your space, look for </span>sound<span> blockers</span>
Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s